ﻻ يوجد ملخص باللغة العربية
This paper introduces the targeted sampling model in optimal auction design. In this model, the seller may specify a quantile interval and sample from a buyers prior restricted to the interval. This can be interpreted as allowing the seller to, for example, examine the top $40$ percents bids from previous buyers with the same characteristics. The targeting power is quantified with a parameter $Delta in [0, 1]$ which lower bounds how small the quantile intervals could be. When $Delta = 1$, it degenerates to Cole and Roughgardens model of i.i.d. samples; when it is the idealized case of $Delta = 0$, it degenerates to the model studied by Chen et al. (2018). For instance, for $n$ buyers with bounded values in $[0, 1]$, $tilde{O}(epsilon^{-1})$ targeted samples suffice while it is known that at least $tilde{Omega}(n epsilon^{-2})$ i.i.d. samples are needed. In other words, targeted sampling with sufficient targeting power allows us to remove the linear dependence in $n$, and to improve the quadratic dependence in $epsilon^{-1}$ to linear. In this work, we introduce new technical ingredients and show that the number of targeted samples sufficient for learning an $epsilon$-optimal auction is substantially smaller than the sample complexity of i.i.d. samples for the full spectrum of $Delta in [0, 1)$. Even with only mild targeting power, i.e., whenever $Delta = o(1)$, our targeted sample complexity upper bounds are strictly smaller than the optimal sample complexity of i.i.d. samples.
This letter considers the design of an auction mechanism to sell the object of a seller when the buyers quantize their private value estimates regarding the object prior to communicating them to the seller. The designed auction mechanism maximizes th
We study the limits of an information intermediary in Bayesian auctions. Formally, we consider the standard single-item auction, with a revenue-maximizing seller and $n$ buyers with independent private values; in addition, we now have an intermediary
The design of optimal auctions is a problem of interest in economics, game theory and computer science. Despite decades of effort, strategyproof, revenue-maximizing auction designs are still not known outside of restricted settings. However, recent m
Designing an incentive compatible auction that maximizes expected revenue is a central problem in Auction Design. Theoretical approaches to the problem have hit some limits in the past decades and analytical solutions are known for only a few simple
Edge computing as a promising technology provides lower latency, more efficient transmission, and faster speed of data processing since the edge servers are closer to the user devices. Each edge server with limited resources can offload latency-sensi