ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation and Quantization of Expected Persistence Diagrams

204   0   0.0 ( 0 )
 نشر من قبل Theo Lacombe
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Vincent Divol




اسأل ChatGPT حول البحث

Persistence diagrams (PDs) are the most common descriptors used to encode the topology of structured data appearing in challenging learning tasks; think e.g. of graphs, time series or point clouds sampled close to a manifold. Given random objects and the corresponding distribution of PDs, one may want to build a statistical summary-such as a mean-of these random PDs, which is however not a trivial task as the natural geometry of the space of PDs is not linear. In this article, we study two such summaries, the Expected Persistence Diagram (EPD), and its quantization. The EPD is a measure supported on R 2 , which may be approximated by its empirical counterpart. We prove that this estimator is optimal from a minimax standpoint on a large class of models with a parametric rate of convergence. The empirical EPD is simple and efficient to compute, but possibly has a very large support, hindering its use in practice. To overcome this issue, we propose an algorithm to compute a quantization of the empirical EPD, a measure with small support which is shown to approximate with near-optimal rates a quantization of the theoretical EPD.



قيم البحث

اقرأ أيضاً

160 - Hai Shu , Bin Nan 2014
We consider the estimation of large covariance and precision matrices from high-dimensional sub-Gaussian or heavier-tailed observations with slowly decaying temporal dependence. The temporal dependence is allowed to be long-range so with longer memor y than those considered in the current literature. We show that several commonly used methods for independent observations can be applied to the temporally dependent data. In particular, the rates of convergence are obtained for the generalized thresholding estimation of covariance and correlation matrices, and for the constrained $ell_1$ minimization and the $ell_1$ penalized likelihood estimation of precision matrix. Properties of sparsistency and sign-consistency are also established. A gap-block cross-validation method is proposed for the tuning parameter selection, which performs well in simulations. As a motivating example, we study the brain functional connectivity using resting-state fMRI time series data with long-range temporal dependence.
Given $n$ samples from a population of individuals belonging to different types with unknown proportions, how do we estimate the probability of discovering a new type at the $(n+1)$-th draw? This is a classical problem in statistics, commonly referre d to as the missing mass estimation problem. Recent results by Ohannessian and Dahleh citet{Oha12} and Mossel and Ohannessian citet{Mos15} showed: i) the impossibility of estimating (learning) the missing mass without imposing further structural assumptions on the type proportions; ii) the consistency of the Good-Turing estimator for the missing mass under the assumption that the tail of the type proportions decays to zero as a regularly varying function with parameter $alphain(0,1)$. In this paper we rely on tools from Bayesian nonparametrics to provide an alternative, and simpler, proof of the impossibility of a distribution-free estimation of the missing mass. Up to our knowledge, the use of Bayesian ideas to study large sample asymptotics for the missing mass is new, and it could be of independent interest. Still relying on Bayesian nonparametric tools, we then show that under regularly varying type proportions the convergence rate of the Good-Turing estimator is the best rate that any estimator can achieve, up to a slowly varying function, and that minimax rate must be at least $n^{-alpha/2}$. We conclude with a discussion of our results, and by conjecturing that the Good-Turing estimator is an rate optimal minimax estimator under regularly varying type proportions.
We consider a problem of manifold estimation from noisy observations. Many manifold learning procedures locally approximate a manifold by a weighted average over a small neighborhood. However, in the presence of large noise, the assigned weights beco me so corrupted that the averaged estimate shows very poor performance. We suggest a novel computationally efficient structure-adaptive procedure which simultaneously reconstructs a smooth manifold and estimates projections of the point cloud onto this manifold. The proposed approach iteratively refines the weights on each step, using the structural information obtained at previous steps. After several iterations, we obtain nearly oracle weights, so that the final estimates are nearly efficient even in the presence of relatively large noise. In our theoretical study we establish tight lower and upper bounds proving asymptotic optimality of the method for manifold estimation under the Hausdorff loss, provided that the noise degrades to zero fast enough.
We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class of generators and discriminators. We prove that the resulting density estimate converges to $p^*$ in terms of Jensen-Shannon (JS) divergence at the rate $(log n/n)^{2beta/(2beta+d)}$ where $n$ is the sample size and $beta$ determines the smoothness of $p^*.$ This is the first result in the literature on density estimation using vanilla GANs with JS rates faster than $n^{-1/2}$ in the regime $beta>d/2.$
Consider the problem of estimating a low-rank matrix when its entries are perturbed by Gaussian noise. If the empirical distribution of the entries of the spikes is known, optimal estimators that exploit this knowledge can substantially outperform si mple spectral approaches. Recent work characterizes the asymptotic accuracy of Bayes-optimal estimators in the high-dimensional limit. In this paper we present a practical algorithm that can achieve Bayes-optimal accuracy above the spectral threshold. A bold conjecture from statistical physics posits that no polynomial-time algorithm achieves optimal error below the same threshold (unless the best estimator is trivial). Our approach uses Approximate Message Passing (AMP) in conjunction with a spectral initialization. AMP algorithms have proved successful in a variety of statistical estimation tasks, and are amenable to exact asymptotic analysis via state evolution. Unfortunately, state evolution is uninformative when the algorithm is initialized near an unstable fixed point, as often happens in low-rank matrix estimation. We develop a new analysis of AMP that allows for spectral initializations. Our main theorem is general and applies beyond matrix estimation. However, we use it to derive detailed predictions for the problem of estimating a rank-one matrix in noise. Special cases of this problem are closely related---via universality arguments---to the network community detection problem for two asymmetric communities. For general rank-one models, we show that AMP can be used to construct confidence intervals and control false discovery rate. We provide illustrations of the general methodology by considering the cases of sparse low-rank matrices and of block-constant low-rank matrices with symmetric blocks (we refer to the latter as to the `Gaussian Block Model).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا