ترغب بنشر مسار تعليمي؟ اضغط هنا

One-step epitaxy of high-mobility La-doped BaSnO3 films by high-pressure magnetron sputtering

84   0   0.0 ( 0 )
 نشر من قبل Ruyi Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a unique perovskite transparent oxide semiconductor, high-mobility La-doped BaSnO3 films have been successfully synthesized by molecular beam epitaxy and pulsed laser deposition. However, it remains a big challenge for magnetron sputtering, a widely applied technique suitable for large-scale fabrication, to grow high-mobility La-doped BaSnO3 films. Here, we developed a method to synthesize high-mobility epitaxial La-doped BaSnO3 films (mobility up to 121 cm2V-1s-1 at the carrier density ~ 4.0 x 10^20 cm-3 at room temperature) directly on SrTiO3 single crystal substrates using high-pressure magnetron sputtering. The structural and electrical properties of the La-doped BaSnO3 films were characterized by combined high-resolution X-ray diffraction, X-ray photoemission spectroscopy, and temperature-dependent electrical transport measurements. The room temperature electron mobility of La-doped BaSnO3 films in this work is 2 to 4 times higher than the reported values of the films grown by magnetron sputtering. Moreover, in the high carrier density range (n > 3 x 10^20 cm-3), the electron mobility value of 121 cm2V-1s-1 in our work is among the highest values for all reported doped BaSnO3 films. It is revealed that high argon pressure during sputtering plays a vital role in stabilizing the fully relaxed films and inducing oxygen vacancies, which benefit the high mobility at room temperature. Our work provides an easy and economical way to massively synthesize high-mobility transparent conducting films for transparent electronics.



قيم البحث

اقرأ أيضاً

Rare-earth (R) nickelates (such as perovskite RNiO3, trilayer R4Ni3O10, and infinite layer RNiO2) have attracted tremendous interest very recently. However, unlike widely studied RNiO3 and RNiO2 films, the synthesis of trilayer nickelate R4Ni3O10 fil ms is rarely reported. Here, single-crystalline (Nd0.8Sr0.2)4Ni3O10 epitaxial films were coherently grown on SrTiO3 substrates by high-pressure magnetron sputtering. The crystal and electronic structures of (Nd0.8Sr0.2)4Ni3O10 films were characterized by high-resolution X-ray diffraction and X-ray photoemission spectroscopy, respectively. The electrical transport measurements reveal a metal-insulator transition near 82 K and negative magnetoresistance in (Nd0.8Sr0.2)4Ni3O10 films. Our work provides a novel route to synthesize high-quality trilayer nickelate R4Ni3O10 films.
Transparent oxide semiconductors (TOSs) showing both high visible transparency and high electron mobility have attracted great attention towards the realization of advanced optoelectronic devices. La-doped BaSnO3 (LBSO) is one of the most promising T OSs because its single crystal exhibits a high electron mobility. However, in the LBSO films, it is very hard to obtain high mobility due to the threading dislocations, which are originated from the lattice mismatch between the film and the substrate. Therefore, many researchers have tried to improve the mobility by inserting a buffer layer. While the buffer layers increased the electron mobilities, this approach leaves much to be desired since it involves a two-step film fabrication process and the enhanced mobility values are still significantly lower than single crystal values. We show herein that the electron mobility of LBSO films can be improved without inserting any buffer layers if the films are grown under highly oxidative ozone (O3) atmospheres. The O3 environments relaxed the LBSO lattice and reduced the formation of Sn2+ states, which are known to suppress the electron mobility in LBSO. The resultant O3-LBSO films showed improved mobility values up to 115 cm2 V-1 s-1, which is among the highest in LBSO films on SrTiO3 substrates and comparable to LBSO films with buffer layers.
92 - H. Rinnert 2019
Er-doped aluminum nitride films, containing different Er concentrations, were obtained at room temperature by reactive radio frequency magnetron sputtering. The prepared samples show a nano-columnar microstructure and the size of the columns is depen dent on the magnetron power. The Er-related photoluminescence (PL) was studied in relation with the temperature, the Er content and the microstructure. Steady-state PL, PL excitation spectroscopy and time-resolved PL were performed. Both visible and near infrared PL were obtained at room temperature for the as-deposited samples. It is demonstrated that the PL intensity reaches a maximum for an Er concentration equal to 1 at. % and that the PL efficiency is an increasing function of the magnetron power. Decay time measurements show the important role of defect related non radiative recombination, assumed to be correlated to the presence of grain boundaries. Moreover PL excitation results demonstrate that an indirect excitation of Er 3+ ions occurs for excitation wavelengths lower than 600 nm. It is also suggested that Er ions occupy at least two different sites in the AlN host matrix.
In this work, we studied phase formation, structural and magnetic properties of iron-nitride (Fe-N) thin films deposited using high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (dc-MS). The nitrogen partial pres sure during deposition was systematically varied both in HiPIMS and dc-MS. Resulting Fe-N films were characterized for their microstructure, magnetic properties and nitrogen concentration. We found that HiPIMS deposited Fe-N films show a globular nanocrystalline microstructure and improved soft magnetic properties. In addition, it was found that the nitrogen reactivity impedes in HiPIMS as compared to dc-MS. Obtained results can be understood in terms of distinct plasma properties of HiPIMS.
BaSnO_{3}, a high mobility perovskite oxide, is an attractive material for oxide-based electronic devices. However, in addition to low-field mobility, high-field transport properties such as the saturation velocity of carriers play a major role in de termining device performance. We report on the experimental measurement of electron saturation velocity in La-doped BaSnO_{3} thin films for a range of doping densities. Predicted saturation velocities based on a simple LO-phonon emission model using an effective LO phonon energy of 120 meV show good agreement with measurements of velocity saturation in La-doped BaSnO_{3} films.. Density-dependent saturation velocity in the range of 1.6x10^{7} cm/s reducing to 2x10^{6} cm/s is predicted for {delta}-doped BaSnO3 channels with carrier densities ranging from 10^{13} cm^{-2} to 2x10^{14} cm^{-2} respectively. These results are expected to aid the informed design of BaSnO3 as the active material for high-charge density electronic transistors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا