ﻻ يوجد ملخص باللغة العربية
We discuss two complementary strategies to search for light dark matter (LDM) exploiting the positron beam possibly available in the future at Jefferson Laboratory. LDM is a new compelling hypothesis that identifies dark matter with new sub-GeV hidden sector states, neutral under standard model interactions and interacting with our world through a new force. Accelerator-based searches at the intensity frontier are uniquely suited to explore it. Thanks to the high intensity and the high energy of the CEBAF (Continuous Electron Beam Accelerator Facility) beam, and relying on a novel LDM production mechanism via positron annihilation on target atomic electrons, the proposed strategies will allow us to explore new regions in the LDM parameters space, thoroughly probing the LDM hypothesis as well as more general hidden sector scenarios.
We present projections for future collider searches for dark matter produced in association with bottom or top quarks. Such production channels give rise to final states with missing transverse energy and one or more b-jets. Limits are given assuming
Convincing and direct evidence for dark matter (DM) on galactic scales comes from the observation of the rotation curves of galaxies. At particle colliders, searches for DM involve the production of a pair of stable electrically neutral and weakly in
Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example o
The annihilation of light dark matter was recently advocated as a possible explanation of the large positron injection rate at the Galactic center deduced from observations by the SPI spectrometer aboard INTEGRAL. The modelling of internal Bremsstrah
Direct-detection searches for axions and hidden photons are playing an increasingly prominent role in the search for dark matter. In this work, we derive the properties of optimal electromagnetic searches for these candidates, subject to the Standard