ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit correlations and exchange-bias control in twisted Janus dichalcogenide multilayers

60   0   0.0 ( 0 )
 نشر من قبل Jose L. Lado
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Janus dichalcogenide multilayers provide a paradigmatic platform to engineer electronic phenomena dominated by spin-orbit coupling. Their unique spin-orbit effects stem from local mirror symmetry breaking in each layer, which induces a colossal Rashba spin-orbit effect in comparison with the conventional dichalcogenide counterparts. Here we put forward twisted dichalcogenide bilayers as a simple platform to realize spin-orbit correlated states. We demonstrate the emergence of flat bands featuring strong spin-momentum locking and the emergence of non-collinear symmetry broken states when interactions are included. We further show that the symmetry broken states can be controlled by means of a magnetic substrate, strongly impacting the non-collinear magnetic texture of the moire unit cell. Our results put forward twisted Janus multilayers as a powerful platform to explore spin-orbit correlated physics, and highlighting the versatility of magnetic substrates to control unconventional moire magnetism.

قيم البحث

اقرأ أيضاً

150 - D. Soriano , J. L. Lado 2020
Twisted van der Waals materials have become a paradigmatic platform to realize exotic correlated states of matter. Here, we show that a twisted dichalcogenide bilayer (WSe$_2$) encapsulated between a magnetic van der Waals material (CrBr$_3$) feature s flat bands with tunable valley and spin flavors. We demonstrate that, when electron-electron interactions are included, spin-ferromagnetic and valley-ferromagnetic states emerge in the flat bands, stemming from the interplay between correlations, intrinsic spin-orbit coupling and exchange proximity effects. We show that the specific symmetry broken state is controlled by the relative alignment of the magnetization of the encapsulation, demonstrating the emergence of correlated states controlled by exchange bias. Our results put forward a new van der Waals heterostructure where symmetry broken states emerge from a genuine interplay between twist engineering, spin-orbit coupling and exchange proximity, providing a powerful starting point to explore exotic collective states of matter.
We have studied the spin orbit torque (SOT) in Pt/Co/Ir multilayers with 3 repeats of the unit structure. As the system exhibits oscillatory interlayer exchange coupling (IEC) with varying Ir layer thickness, we compare the SOT of films when the Co l ayers are coupled ferromagnetically and antiferromagnetically. SOT is evaluated using current induced shift of the anomalous Hall resistance hysteresis loops. A relatively thick Pt layer, serving as a seed layer to the multilayer, is used to generate spin current via the spin Hall effect. In the absence of antiferromagnetic coupling, the SOT is constant against the applied current density and the corresponding spin torque efficiency (i.e. the effective spin Hall angle) is $sim$0.09, in agreement with previous reports. In contrast, for films with antiferromagnetic coupling, the SOT increases with the applied current density and eventually saturates. The SOT at saturation is a factor of $sim$15 larger than that without the antiferromagnetic coupling. The spin torque efficiency is $sim$5 times larger if we assume the net total magnetization is reduced by a factor of 3 due to the antiferromagnetic coupling. Model calculations based on the Landau Lifshitz Gilbert equation show that the presence of antiferromagnetic coupling can increase the SOT but the degree of enhancement is limited, in this case, to a factor of 1.2-1.4. We thus consider there are other sources of SOT, possibly at the interfaces, which may account for the highly efficient SOT in the uncompensated synthetic anti-ferromagnet (SAF) multilayers.
We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenides monolayers. We show that momentum and spin relaxation times due to the exchange interaction by magnetic impurities, are m uch longer when the Fermi level is inside the spin split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature $T_K$ on the doping is not strongly affected by the spin-orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and poor mans scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to $T_K$ which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials.
The advent of topological phases of matter revealed a variety of observed boundary phenomena, such as chiral and helical modes found at the edges of two-dimensional (2D) topological insulators. Antichiral states in 2D semimetals, i.e., copropagating edge modes on opposite edges compensated by a counterpropagating bulk current, are also predicted, but, to date, no realization of such states in a solid-state system has been found. Here, we put forward a procedure to realize antichiral states in twisted van der Waals multilayers, by combining the electronic Dirac-cone spectra of each layer through the combination of the orbital moire superstructure, an in-plane magnetic field, and inter-layer bias voltage. In particular, we demonstrate that a twisted van der Waals heterostructure consisting of graphene/two layers of hexagonal boron nitride [(hBN)$_2$]/graphene will show antichiral states at in-plane magnetic fields of 8 T, for a rotation angle of 0.2$^{circ}$ between the graphene layers. Our findings engender a controllable procedure to engineer antichiral states in solid-state systems, as well as in quantum engineered metamaterials.
We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions, an enhancement of the coercive field (exchange enhancement ) and an enhancement of the coercive field combined with large shifts of the hysteresis loop (exchange bias), have been observed in these heterostructures, which depend directly on the type and crystallography of the nanoscale (2 nm) domain walls in the BiFeO3 film. We show that the magnitude of the exchange bias interaction scales with the length of 109 degree ferroelectric domain walls in the BiFeO3 thin films which have been probed via piezoresponse force microscopy and x-ray magnetic circular dichroism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا