ﻻ يوجد ملخص باللغة العربية
One of the fundamental challenges in nanophotonics is to gain full control over nanoscale optical elements. The precise spatiotemporal arrangement determines their interactions and collective behavior. To this end, DNA nanotechnology is employed as an unprecedented tool to create nanophotonic devices with excellent spatial addressability and temporal programmability. However, most of the current DNA-assembled nanophotonic devices can only reconfigure among random or very few defined states. Here, we demonstrate a DNA-assembled rotary plasmonic nanoclock. In this system, a rotor gold nanorod can carry out directional and reversible 360 degree rotation with respect to a stator gold nanorod, transitioning among 16 well-defined configurations powered by DNA fuels. The full-turn rotation process is monitored by optical spectroscopy in real time. We further demonstrate autonomous rotation of the plasmonic nanoclock powered by DNAzyme-RNA interactions. Such assembly approaches pave a viable route towards advanced nanophotonic systems entirely from the bottom-up.
In this article, a chiral plasmonic hydrogen-sensing platform using palladium-based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theor
Topological photonics has revolutionized our understanding of light propagation, but most of current studies are focused on designing a static photonic structure. Developing a dynamic photonic topological platform to switch multiple topological funct
Arrays of metallic particles patterned on a substrate have emerged as a promising design for on-chip plasmonic lasers. In past examples of such devices, the periodic particles provided feedback at a single resonance wavelength, and organic dye molecu
Graphene-based photodetectors, taking advantage of high carrier mobility and broadband absorption in graphene, have recently experienced rapid development. However, their performances with respect to the responsivity and bandwidth are still limited b
Densely integrated active photonics is key for next generation on-chip networks for addressing both footprint and energy budget concerns. However, the weak light-matter interaction in traditional active Silicon optoelectronics mandates rather sizable