ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneously Integrated ITO Plasmonic Mach-Zehnder Interferometric Modulator on SOI

87   0   0.0 ( 0 )
 نشر من قبل Volker Sorger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Densely integrated active photonics is key for next generation on-chip networks for addressing both footprint and energy budget concerns. However, the weak light-matter interaction in traditional active Silicon optoelectronics mandates rather sizable device lengths. The ideal active material choice should avail high index modulation while being easily integrated into Silicon photonics platforms. Indium tin oxide (ITO) offers such functionalities and has shown promising modulation capacity recently. Interestingly, the nanometer-thin unity-strong index modulation of ITO synergistically combines the high group-index in hybrid plasmonic with nanoscale optical modes. Following this design paradigm, here, we demonstrate a spectrally broadband, GHz-fast Mach-Zehnder interferometric modulator, exhibiting a high efficiency signified by a miniscule VpL of 95 Vum, deploying an one-micrometer compact electrostatically tunable plasmonic phase-shifter, based on heterogeneously integrated ITO thin films into silicon photonics. Furthermore we show, that this device paradigm enables spectrally broadband operation across the entire telecommunication near infrared C-band. Such sub-wavelength short efficient and fast modulators monolithically integrated into Silicon platform open up new possibilities for high-density photonic circuitry, which is critical for high interconnect density of photonic neural networks or applications in GHz-fast optical phased-arrays, for example.



قيم البحث

اقرأ أيضاً

Electro-optic modulators transform electronic signals into the optical domain and are critical components in modern telecommunication networks, RF photonics, and emerging applications in quantum photonics and beam steering. All these applications req uire integrated and voltage-efficient modulator solutions with compact formfactors that are seamlessly integratable with Silicon photonics platforms and feature near-CMOS material processing synergies. However, existing integrated modulators are challenged to meet these requirements. Conversely, emerging electro-optic materials heterogeneously integrated with Si photonics open a new avenue for device engineering. Indium tin oxide (ITO) is one such compelling material for heterogeneous integration in Si exhibiting formidable electro-optic effect characterized by unity order index at telecommunication frequencies. Here we overcome these limitations and demonstrate a monolithically integrated ITO electro- optic modulator based on a Mach Zehnder interferometer (MZI) featuring a high-performance half-wave voltage and active device length product, VpL = 0.52 V-mm. We show, how that the unity-strong index change enables a 30 micrometer-short pi-phase shifter operating ITO in the index-dominated region away from the epsilon-bear-zero ENZ point. This device experimentally confirms electrical phase shifting in ITO enabling its use in multifaceted applications including dense on-chip communication networks, nonlinearity for activation functions in photonic neural networks, and phased array applications for LiDAR.
Here, we experimentally demonstrate an Indium Tin Oxide (ITO) Mach-Zehnder interferometer heterogeneously integrated in silicon photonics. The phase shifter section is realized in a novel lateral MOS configuration, which, due to favorable electrostat ic overlap, leads to efficient modulation (V{pi}L = 63 Vum). This is achieved by (i) selecting a strong index changing material (ITO) and (ii) improving the field overlap as verified by the electrostatic field lines. Furthermore, we show that this platform serves as a building block in an endfire silicon photonics optical phased array (OPA) with a half-wavelength pitch within the waveguides with anticipated performance, including narrow main beam lobe (<3{deg}) and >10 dB suppression of the side lobes, while electrostatically steering the emission profile up to plus/minus 80{deg}, and if further engineered, can lead not only towards nanosecond-fast beam steering capabilities in LiDAR systems but also in holographic display, free-space optical communications, and optical switches.
This paper describes the development of a photonic local oscillator (LO) source based on a 3-stage Mach-Zehnder modulator (MZM) device. The MZM laser synthesizer demonstrates the feasibility of providing the photonic reference LO for the Atacama Larg e Millimeter Array telescope located in Chile. This MZM approach to generating an LO by radio RF modulation of a monochromatic optical source provides the merits of wide frequency coverage of 4-130 GHz, tuning speed of about 0.2 seconds, and residual integrated phase noise performance of 0.3 degrees RMS at 100 GHz.
Integrated electrical and photonic circuits (PIC) operating at cryogenic temperatures are fundamental building blocks required to achieve scalable quantum computing, and cryogenic computing technologies. Optical interconnects offer better performance and thermal insulation than electrical wires and are imperative for true quantum communication. Silicon PICs have matured for room temperature applications but their cryogenic performance is limited by the absence of efficient low temperature electro-optic (EO) modulation. While detectors and lasers perform better at low temperature, cryogenic optical switching remains an unsolved challenge. Here we demonstrate EO switching and modulation from room temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3)-based devices. We report the nonlinear optical (NLO) properties of BaTiO3 in a temperature range which has previously not been explored, showing an effective Pockels coefficient of 200 pm/V at 4 K. We demonstrate the largest EO bandwidth (30 GHz) of any cryogenic switch to date, ultra-low-power tuning which is 10^9 times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our results demonstrate a missing component for cryogenic PICs. It removes major roadblocks for the realisation of novel cryogenic-compatible systems in the field of quantum computing and supercomputing, and for interfacing those systems with the real world at room-temperature.
Recently integrated optics has become an intriguing platform for implementing machine learning algorithms and inparticular neural networks. Integrated photonic circuits can straightforwardly perform vector-matrix multiplicationswith high efficiency a nd low power consumption by using weighting mechanism through linear optics. Although,this can not be said for the activation function which requires either nonlinear optics or an electro-optic module withan appropriate dynamic range. Even though all-optical nonlinear optics is potentially faster, its current integrationis challenging and is rather inefficient. Here we demonstrate an electro-absorption modulator based on an IndiumTin Oxide layer, whose dynamic range is used as nonlinear activation function of a photonic neuron. The nonlinearactivation mechanism is based on a photodiode, which integrates the weighed products, and whose photovoltage drivesthe elecro-absorption modulator. The synapse and neuron circuit is then constructed to execute a 200-node MNISTclassification neural network used for benchmarking the nonlinear activation function and compared with an equivalentelectronic module.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا