ﻻ يوجد ملخص باللغة العربية
A fringe subtree of a rooted tree is a subtree induced by one of the vertices and all its descendants. We consider the problem of estimating the number of distinct fringe subtrees in two types of random trees: simply generated trees and families of increasing trees (recursive trees, $d$-ary increasing trees and generalized plane-oriented recursive trees). We prove that the order of magnitude of the number of distinct fringe subtrees (under rather mild assumptions on what `distinct means) in random trees with $n$ vertices is $n/sqrt{log n}$ for simply generated trees and $n/log n$ for increasing trees.
A fringe subtree of a rooted tree is a subtree consisting of one of the nodes and all its descendants. In this paper, we are specifically interested in the number of non-isomorphic trees that appear in the collection of all fringe subtrees of a binar
For a connected graph, a {em minimum vertex separator} is a minimum set of vertices whose removal creates at least two connected components. The vertex connectivity of the graph refers to the size of the minimum vertex separator and a graph is $k$-ve
For $n > 2k geq 4$ we consider intersecting families $mathcal F$ consisting of $k$-subsets of ${1, 2, ldots, n}$. Let $mathcal I(mathcal F)$ denote the family of all distinct intersections $F cap F$, $F eq F$ and $F, Fin mathcal F$. Let $mathcal A$
For a family $mathcal F$, let $mathcal D(mathcal F)$ stand for the family of all sets that can be expressed as $Fsetminus G$, where $F,Gin mathcal F$. A family $mathcal F$ is intersecting if any two sets from the family have non-empty intersection. I
We study hypergraph discrepancy in two closely related random models of hypergraphs on $n$ vertices and $m$ hyperedges. The first model, $mathcal{H}_1$, is when every vertex is present in exactly $t$ randomly chosen hyperedges. The premise of this is