ﻻ يوجد ملخص باللغة العربية
For a family $mathcal F$, let $mathcal D(mathcal F)$ stand for the family of all sets that can be expressed as $Fsetminus G$, where $F,Gin mathcal F$. A family $mathcal F$ is intersecting if any two sets from the family have non-empty intersection. In this paper, we study the following question: what is the maximum of $|mathcal D(mathcal F)|$ for an intersecting family of $k$-element sets? Frankl conjectured that the maximum is attained when $mathcal F$ is the family of all sets containing a fixed element. We show that this holds if $n>50klog k$ and $k>50$. At the same time, we provide a counterexample for $n< 4k.$
For $n > 2k geq 4$ we consider intersecting families $mathcal F$ consisting of $k$-subsets of ${1, 2, ldots, n}$. Let $mathcal I(mathcal F)$ denote the family of all distinct intersections $F cap F$, $F eq F$ and $F, Fin mathcal F$. Let $mathcal A$
A family $mathcal F$ has covering number $tau$ if the size of the smallest set intersecting all sets from $mathcal F$ is equal to $s$. Let $m(n,k,tau)$ stand for the size of the largest intersecting family $mathcal F$ of $k$-element subsets of ${1,ld
Let $mathcal{F}$ and $mathcal{G}$ be two $t$-uniform families of subsets over $[k] = {1,2,...,k}$, where $|mathcal{F}| = |mathcal{G}|$, and let $C$ be the adjacency matrix of the bipartite graph whose vertices are the subsets in $mathcal{F}$ and $mat
A family of sets is said to be emph{symmetric} if its automorphism group is transitive, and emph{intersecting} if any two sets in the family have nonempty intersection. Our purpose here is to study the following question: for $n, kin mathbb{N}$ with
We shall be interested in the following Erdos-Ko-Rado-type question. Fix some subset B of [n]. How large a family A of subsets of [n] can we find such that the intersection of any two sets in A contains a cyclic translate (modulo n) of B? Chung, Grah