ترغب بنشر مسار تعليمي؟ اضغط هنا

Inhibition of spread of typical bipartite and genuine multiparty entanglement in response to quenched disorder

56   0   0.0 ( 0 )
 نشر من قبل Anindya Biswas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The distribution of entanglement of typical multiparty quantum states is not uniform over the range of the measure utilized for quantifying the entanglement. We intend to find the response of quenched disorder in the state parameters on this non-uniformity for typical states. We find that the typical entanglement, quenched averaged over the disorder, is taken farther away from uniformity, as quantified by decreased standard deviation, in comparison to the clean case. The feature is seemingly generic, as we see it for Gaussian and non-Gaussian disorder distributions, for varying strengths of the disorder, and for disorder insertions in one and several state parameters. The non-Gaussian distributions considered are uniform and Cauchy-Lorentz. Two- and three-qubit pure state Haar-uniform generations are considered for the typical state productions. We also consider noi



قيم البحث

اقرأ أيضاً

We investigate bipartite entanglement in random quantum $XY$ models at equilibrium. Depending on the intrinsic time scales associated with equilibration of the random parameters and measurements associated with observation of the system, we consider two distinct kinds of disorder, namely annealed and quenched disorders. We conduct a comparative study of the effects of disorder on nearest-neighbor entanglement, when the nature of randomness changes from being annealed to quenched. We find that entanglement properties of the annealed and quenched disordered systems are drastically different from each other. This is realized by identifying the regions of parameter space in which the nearest-neighbor state is entangled, and the regions where a disorder-induced enhancement of entanglement $-$ order-from-disorder $-$ is obtained. We also analyze the response of the quantum phase transition point of the ordered system with the infusion of disorder.
We consider a quantum particle (walker) on a line who coherently chooses to jump to the left or right depending on the result of toss of a quantum coin. The lengths of the jumps are considered to be independent and identically distributed quenched Po isson random variables. We find that the spread of the walker is significantly inhibited, whereby it resides in the near-origin region, with respect to the case when there is no disorder. The scaling exponent of the quenched-averaged dispersion of the walker is sub-ballistic but super-diffusive. We also show that the features are universal to a class of sub- and super-Poissonian distributed quenched randomized jumps.
Monogamy is a nonclassical property that limits the distribution of quantum correlation among subparts of a multiparty system. We show that monogamy scores for different quantum correlation measures are bounded above by functions of genuine multipart ite entanglement for a large majority of pure multiqubit states. The bound is universal for all three-qubit pure states. We derive necessary conditions to characterize the states that violate the bound, which can also be observed by numerical simulation for a small set of states, generated Haar uniformly. The results indicate that genuine multipartite entanglement restricts the distribution of bipartite quantum correlations in a multiparty system.
120 - S. Gerke , J. Sperling , W. Vogel 2016
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially wh en the system involves more than two parties, for which different partitions must be simultaneously considered. In the case of mixed states, intermediate levels of correlations must be introduced, coined by the name inseparability. In this work, we revisit in more detail such a concept in the context of continuous-variable quantum optics. We consider a six-partite quantum state that we have effectively generated by the parametric downconversion of a femtosecond frequency comb, the full 12 x 12 covariance matrix of which has been experimentally determined. We show that, though this state does not exhibit genuine entanglement, it is undoubtedly multipartite-entangled. The consideration of not only the entanglement of individual mode-decompositions but also of combinations of those solves the puzzle and exemplifies the importance of studying different categories of multipartite entanglement.
163 - Mazhar Ali 2017
We study the dynamics of genuine multipartite entanglement for quantum systems upto four qubits interacting with general collective dephasing process. Using a computable entanglement monotone for multipartite systems, we observe the feature of freezi ng dynamics of genuine entanglement for three and four qubits entangled states. We compare the dynamics with that of random states and find that most states exibit this feature. We then study the effects of collective dephasing on genuine nonlocality and find out that although quantum states remain genuinely entangled yet their genuine nonlocality is lost in a finite time. We show the sensitivity of asymptotic states being genuinely entangled by mixing white noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا