ترغب بنشر مسار تعليمي؟ اضغط هنا

On separability of unbounded norm topology

50   0   0.0 ( 0 )
 نشر من قبل Marko Kandi\\'c
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we continue the investigation of topological properties of unbounded norm (un-)topology in normed lattices. We characterize separability and second countability of un-topology in terms of properties of the underlying normed lattice. We apply our results to prove that an order continuous Banach function space $X$ over a semi-finite measure space is separable if and only if it has a $sigma$-finite carrier and is separable with respect to the topology of local convergence in measure. We also address the question when a normed lattice is a normal space with respect to the un-topology.



قيم البحث

اقرأ أيضاً

In this paper, equivalence constants between various polynomial norms are calculated. As an application, we also obtain sharp values of the Hardy--Littlewood constants for $2$-homogeneous polynomials on $ell_p^2$ spaces, $2<pleqinfty$ and lower estimates for polynomials of higher degrees.
74 - Yoritaka Iwata 2021
The logarithmic representation of infinitesimal generators is generalized to the cases when the evolution operator is unbounded. The generalized result is applicable to the representation of infinitesimal generators of unbounded evolution operators, where unboundedness of evolution operator is an essential ingredient of nonlinear analysis. In conclusion a general framework for the identification between the infinitesimal generators with evolution operators is established. A mathematical framework for such an identification is indispensable to the rigorous treatment of nonlinear transforms: e.g., transforms appearing in the theory of integrable systems.
We survey some classical norm inequalities of Hardy, Kallman, Kato, Kolmogorov, Landau, Littlewood, and Rota of the type [ |A f|_{mathcal{X}}^2 leq C |f|_{mathcal{X}} big|A^2 fbig|_{mathcal{X}}, quad f in dombig(A^2big), ] and recall that under excee dingly stronger hypotheses on the operator $A$ and/or the Banach space $mathcal{X}$, the optimal constant $C$ in these inequalities diminishes from $4$ (e.g., when $A$ is the generator of a $C_0$ contraction semigroup on a Banach space $mathcal{X}$) all the way down to $1$ (e.g., when $A$ is a symmetric operator on a Hilbert space $mathcal{H}$). We also survey some results in connection with an extension of the Hardy-Littlewood inequality involving quadratic forms as initiated by Everitt.
54 - J. E. Pascoe 2019
We give an entire free holomorphic function $f$ which is unbounded on the row ball. That is, we give a holomorphic free noncommutative function which is continuous in the free topology developed by Agler and McCarthy but is unbounded on the set of row contractions.
217 - M. Moller , F.H. Szafraniec 2007
In this paper we {em discuss} diverse aspects of mutual relationship between adjoints and formal adjoints of unbounded operators bearing a matrix structure. We emphasize on the behaviour of row and column operators as they turn out to be the germs of an arbitrary matrix operator, providing most of the information about the latter {as it is the troublemaker}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا