ترغب بنشر مسار تعليمي؟ اضغط هنا

BasisNet: Two-stage Model Synthesis for Efficient Inference

180   0   0.0 ( 0 )
 نشر من قبل Mingda Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present BasisNet which combines recent advancements in efficient neural network architectures, conditional computation, and early termination in a simple new form. Our approach incorporates a lightweight model to preview the input and generate input-dependent combination coefficients, which later controls the synthesis of a more accurate specialist model to make final prediction. The two-stage model synthesis strategy can be applied to any network architectures and both stages are jointly trained. We also show that proper training recipes are critical for increasing generalizability for such high capacity neural networks. On ImageNet classification benchmark, our BasisNet with MobileNets as backbone demonstrated clear advantage on accuracy-efficiency trade-off over several strong baselines. Specifically, BasisNet-MobileNetV3 obtained 80.3% top-1 accuracy with only 290M Multiply-Add operations, halving the computational cost of previous state-of-the-art without sacrificing accuracy. With early termination, the average cost can be further reduced to 198M MAdds while maintaining accuracy of 80.0% on ImageNet.

قيم البحث

اقرأ أيضاً

Dynamic inference is a feasible way to reduce the computational cost of convolutional neural network(CNN), which can dynamically adjust the computation for each input sample. One of the ways to achieve dynamic inference is to use multi-stage neural n etwork, which contains a sub-network with prediction layer at each stage. The inference of a input sample can exit from early stage if the prediction of the stage is confident enough. However, design a multi-stage CNN architecture is a non-trivial task. In this paper, we introduce a general framework, ENAS4D, which can efficiently search for optimal multi-stage CNN architecture for dynamic inference in a well-designed search space. Firstly, we propose a method to construct the search space with multi-stage convolution. The search space include different numbers of layers, different kernel sizes and different numbers of channels for each stage and the resolution of input samples. Then, we train a once-for-all network that supports to sample diverse multi-stage CNN architecture. A specialized multi-stage network can be obtained from the once-for-all network without additional training. Finally, we devise a method to efficiently search for the optimal multi-stage network that trades the accuracy off the computational cost taking the advantage of once-for-all network. The experiments on the ImageNet classification task demonstrate that the multi-stage CNNs searched by ENAS4D consistently outperform the state-of-the-art method for dyanmic inference. In particular, the network achieves 74.4% ImageNet top-1 accuracy under 185M average MACs.
High-quality computer vision models typically address the problem of understanding the general distribution of real-world images. However, most cameras observe only a very small fraction of this distribution. This offers the possibility of achieving more efficient inference by specializing compact, low-cost models to the specific distribution of frames observed by a single camera. In this paper, we employ the technique of model distillation (supervising a low-cost student model using the output of a high-cost teacher) to specialize accurate, low-cost semantic segmentation models to a target video stream. Rather than learn a specialized student model on offline data from the video stream, we train the student in an online fashion on the live video, intermittently running the teacher to provide a target for learning. Online model distillation yields semantic segmentation models that closely approximate their Mask R-CNN teacher with 7 to 17$times$ lower inference runtime cost (11 to 26$times$ in FLOPs), even when the target videos distribution is non-stationary. Our method requires no offline pretraining on the target video stream, achieves higher accuracy and lower cost than solutions based on flow or video object segmentation, and can exhibit better temporal stability than the original teacher. We also provide a new video dataset for evaluating the efficiency of inference over long running video streams.
Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in compute r vision for years. This naturally raises the question of how the performance of ViT can be advanced with design techniques of CNN. To this end, we propose to incorporate two techniques and present ViT-ResNAS, an efficient multi-stage ViT architecture designed with neural architecture search (NAS). First, we propose residual spatial reduction to decrease sequence lengths for deeper layers and utilize a multi-stage architecture. When reducing lengths, we add skip connections to improve performance and stabilize training deeper networks. Second, we propose weight-sharing NAS with multi-architectural sampling. We enlarge a network and utilize its sub-networks to define a search space. A super-network covering all sub-networks is then trained for fast evaluation of their performance. To efficiently train the super-network, we propose to sample and train multiple sub-networks with one forward-backward pass. After that, evolutionary search is performed to discover high-performance network architectures. Experiments on ImageNet demonstrate that ViT-ResNAS achieves better accuracy-MACs and accuracy-throughput trade-offs than the original DeiT and other strong baselines of ViT. Code is available at https://github.com/yilunliao/vit-search.
Semantic segmentation for scene understanding is nowadays widely demanded, raising significant challenges for the algorithm efficiency, especially its applications on resource-limited platforms. Current segmentation models are trained and evaluated o n massive high-resolution scene images (data level) and suffer from the expensive computation arising from the required multi-scale aggregation(network level). In both folds, the computational and energy costs in training and inference are notable due to the often desired large input resolutions and heavy computational burden of segmentation models. To this end, we propose DANCE, general automated DAta-Network Co-optimization for Efficient segmentation model training and inference. Distinct from existing efficient segmentation approaches that focus merely on light-weight network design, DANCE distinguishes itself as an automated simultaneous data-network co-optimization via both input data manipulation and network architecture slimming. Specifically, DANCE integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images spatial complexity. Such a downsampling operation, in addition to slimming down the cost associated with the input size directly, also shrinks the dynamic range of input object and context scales, therefore motivating us to also adaptively slim the network to match the downsampled data. Extensive experiments and ablating studies (on four SOTA segmentation models with three popular segmentation datasets under two training settings) demonstrate that DANCE can achieve all-win towards efficient segmentation(reduced training cost, less expensive inference, and better mean Intersection-over-Union (mIoU)).
87 - Le Yang , Yizeng Han , Xi Chen 2020
Adaptive inference is an effective mechanism to achieve a dynamic tradeoff between accuracy and computational cost in deep networks. Existing works mainly exploit architecture redundancy in network depth or width. In this paper, we focus on spatial r edundancy of input samples and propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying easy inputs containing large objects with prototypical features, while only some hard samples need spatially detailed information. In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations, and those samples with high prediction confidence will exit early from the network without being further processed. Meanwhile, high-resolution paths in the network maintain the capability to recognize the hard samples. Therefore, RANet can effectively reduce the spatial redundancy involved in inferring high-resolution inputs. Empirically, we demonstrate the effectiveness of the proposed RANet on the CIFAR-10, CIFAR-100 and ImageNet datasets in both the anytime prediction setting and the budgeted batch classification setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا