ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Model Distillation for Efficient Video Inference

117   0   0.0 ( 0 )
 نشر من قبل Ravi Teja Mullapudi
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

High-quality computer vision models typically address the problem of understanding the general distribution of real-world images. However, most cameras observe only a very small fraction of this distribution. This offers the possibility of achieving more efficient inference by specializing compact, low-cost models to the specific distribution of frames observed by a single camera. In this paper, we employ the technique of model distillation (supervising a low-cost student model using the output of a high-cost teacher) to specialize accurate, low-cost semantic segmentation models to a target video stream. Rather than learn a specialized student model on offline data from the video stream, we train the student in an online fashion on the live video, intermittently running the teacher to provide a target for learning. Online model distillation yields semantic segmentation models that closely approximate their Mask R-CNN teacher with 7 to 17$times$ lower inference runtime cost (11 to 26$times$ in FLOPs), even when the target videos distribution is non-stationary. Our method requires no offline pretraining on the target video stream, achieves higher accuracy and lower cost than solutions based on flow or video object segmentation, and can exhibit better temporal stability than the original teacher. We also provide a new video dataset for evaluating the efficiency of inference over long running video streams.



قيم البحث

اقرأ أيضاً

Existing state-of-the-art human pose estimation methods require heavy computational resources for accurate predictions. One promising technique to obtain an accurate yet lightweight pose estimator is knowledge distillation, which distills the pose kn owledge from a powerful teacher model to a less-parameterized student model. However, existing pose distillation works rely on a heavy pre-trained estimator to perform knowledge transfer and require a complex two-stage learning procedure. In this work, we investigate a novel Online Knowledge Distillation framework by distilling Human Pose structure knowledge in a one-stage manner to guarantee the distillation efficiency, termed OKDHP. Specifically, OKDHP trains a single multi-branch network and acquires the predicted heatmaps from each, which are then assembled by a Feature Aggregation Unit (FAU) as the target heatmaps to teach each branch in reverse. Instead of simply averaging the heatmaps, FAU which consists of multiple parallel transformations with different receptive fields, leverages the multi-scale information, thus obtains target heatmaps with higher-quality. Specifically, the pixel-wise Kullback-Leibler (KL) divergence is utilized to minimize the discrepancy between the target heatmaps and the predicted ones, which enables the student network to learn the implicit keypoint relationship. Besides, an unbalanced OKDHP scheme is introduced to customize the student networks with different compression rates. The effectiveness of our approach is demonstrated by extensive experiments on two common benchmark datasets, MPII and COCO.
Deep convolutional networks have recently achieved great success in video recognition, yet their practical realization remains a challenge due to the large amount of computational resources required to achieve robust recognition. Motivated by the eff ectiveness of quantization for boosting efficiency, in this paper, we propose a dynamic network quantization framework, that selects optimal precision for each frame conditioned on the input for efficient video recognition. Specifically, given a video clip, we train a very lightweight network in parallel with the recognition network, to produce a dynamic policy indicating which numerical precision to be used per frame in recognizing videos. We train both networks effectively using standard backpropagation with a loss to achieve both competitive performance and resource efficiency required for video recognition. Extensive experiments on four challenging diverse benchmark datasets demonstrate that our proposed approach provides significant savings in computation and memory usage while outperforming the existing state-of-the-art methods.
This paper presents a novel knowledge distillation based model compression framework consisting of a student ensemble. It enables distillation of simultaneously learnt ensemble knowledge onto each of the compressed student models. Each model learns u nique representations from the data distribution due to its distinct architecture. This helps the ensemble generalize better by combining every models knowledge. The distilled students and ensemble teacher are trained simultaneously without requiring any pretrained weights. Moreover, our proposed method can deliver multi-compressed students with single training, which is efficient and flexible for different scenarios. We provide comprehensive experiments using state-of-the-art classification models to validate our frameworks effectiveness. Notably, using our framework a 97% compressed ResNet110 student model managed to produce a 10.64% relative accuracy gain over its individual baseline training on CIFAR100 dataset. Similarly a 95% compressed DenseNet-BC(k=12) model managed a 8.17% relative accuracy gain.
For semantic segmentation, most existing real-time deep models trained with each frame independently may produce inconsistent results for a video sequence. Advanced methods take into considerations the correlations in the video sequence, e.g., by pro pagating the results to the neighboring frames using optical flow, or extracting the frame representations with other frames, which may lead to inaccurate results or unbalanced latency. In this work, we process efficient semantic video segmentation in a per-frame fashion during the inference process. Different from previous per-frame models, we explicitly consider the temporal consistency among frames as extra constraints during the training process and embed the temporal consistency into the segmentation network. Therefore, in the inference process, we can process each frame independently with no latency, and improve the temporal consistency with no extra computational cost and post-processing. We employ compact models for real-time execution. To narrow the performance gap between compact models and large models, new knowledge distillation methods are designed. Our results outperform previous keyframe based methods with a better trade-off between the accuracy and the inference speed on popular benchmarks, including the Cityscapes and Camvid. The temporal consistency is also improved compared with corresponding baselines which are trained with each frame independently. Code is available at: https://tinyurl.com/segment-video
93 - Miao Liu , Xin Chen , Yun Zhang 2019
We address the challenging problem of learning motion representations using deep models for video recognition. To this end, we make use of attention modules that learn to highlight regions in the video and aggregate features for recognition. Specific ally, we propose to leverage output attention maps as a vehicle to transfer the learned representation from a motion (flow) network to an RGB network. We systematically study the design of attention modules, and develop a novel method for attention distillation. Our method is evaluated on major action benchmarks, and consistently improves the performance of the baseline RGB network by a significant margin. Moreover, we demonstrate that our attention maps can leverage motion cues in learning to identify the location of actions in video frames. We believe our method provides a step towards learning motion-aware representations in deep models. Our project page is available at https://aptx4869lm.github.io/AttentionDistillation/
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا