ﻻ يوجد ملخص باللغة العربية
We propose a method for estimating more reproducible functional networks that are more strongly associated with dynamic task activity by using recurrent neural networks with long short term memory (LSTMs). The LSTM model is trained in an unsupervised manner to learn to generate the functional magnetic resonance imaging (fMRI) time-series data in regions of interest. The learned functional networks can then be used for further analysis, e.g., correlation analysis to determine functional networks that are strongly associated with an fMRI task paradigm. We test our approach and compare to other methods for decomposing functional networks from fMRI activity on 2 related but separate datasets that employ a biological motion perception task. We demonstrate that the functional networks learned by the LSTM model are more strongly associated with the task activity and dynamics compared to other approaches. Furthermore, the patterns of network association are more closely replicated across subjects within the same dataset as well as across datasets. More reproducible functional networks are essential for better characterizing the neural correlates of a target task.
Purpose: This study investigates whether a machine-learning-based system can predict the rate of cognitive decline in mildly cognitively impaired patients by processing only the clinical and imaging data collected at the initial visit. Approach: We
Background:Cognitive assessments represent the most common clinical routine for the diagnosis of Alzheimers Disease (AD). Given a large number of cognitive assessment tools and time-limited office visits, it is important to determine a proper set of
We describe the current state and future plans for a set of tools for scientific data management (SDM) designed to support scientific transparency and reproducible research. SDM has been in active use at our MRI Center for more than two years. We des
When an epidemic spreads into a population, it is often unpractical or impossible to have a continuous monitoring of all subjects involved. As an alternative, algorithmic solutions can be used to infer the state of the whole population from a limited
This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart