ﻻ يوجد ملخص باللغة العربية
Non-reciprocal plasmons in current-driven, isotropic, and homogenous graphene with proximal metallic gates is theoretically explored. Nearby metallic gates screen the Coulomb interactions, leading to linearly dispersive acoustic plasmons residing close to its particle-hole continuum counterpart. We show that the applied bias leads to spectral broadband focused plasmons whose resonance linewidth is dependent on the angular direction relative to the current flow due to Landau damping. We predict that forward focused non-reciprocal plasmons are possible with accessible experimental parameters and setup.
An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the very same 2D band of extrinsic (doped or gated) graphe
We study the effect of two metallic slabs on the collective dynamics of electrons in graphene positioned between the two slabs. We show that if the slabs are perfect conductors the plasmons of graphene display a linear dispersion relation. The veloci
A quantitative understanding of the electromagnetic response of materials is essential for the precise engineering of maximal, versatile, and controllable light--matter interactions. Material surfaces, in particular, are prominent platforms for enhan
Vertical plasmonic coupling in double-layer graphene leads to two hybridized plasmonic modes: optical and acoustic plasmons with symmetric and anti-symmetric charge distributions across the interlayer gap, respectively. However, in most experiments b
Recently, it was demonstrated that a graphene/dielectric/metal configuration can support acoustic plasmons, which exhibit extreme plasmon confinement an order of magnitude higher than that of conventional graphene plasmons. Here, we investigate acous