ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic Acoustic Plasmons in Black Phosphorus

107   0   0.0 ( 0 )
 نشر من قبل Sang-Hyun Oh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, it was demonstrated that a graphene/dielectric/metal configuration can support acoustic plasmons, which exhibit extreme plasmon confinement an order of magnitude higher than that of conventional graphene plasmons. Here, we investigate acoustic plasmons supported in a monolayer and multilayers of black phosphorus (BP) placed just a few nanometers above a conducting plate. In the presence of a conducting plate, the acoustic plasmon dispersion for the armchair direction is found to exhibit the characteristic linear scaling in the mid- and far-infrared regime while it largely deviates from that in the long wavelength limit and near-infrared regime. For the zigzag direction, such scaling behavior is not evident due to relatively tighter plasmon confinement. Further, we demonstrate a new design for an acoustic plasmon resonator that exhibits higher plasmon confinement and resonance efficiency than BP ribbon resonators in the mid-infrared and longer wavelength regime. Theoretical framework and new resonator design studied here provide a practical route toward the experimental verification of the acoustic plasmons in BP and open up the possibility to develop novel plasmonic and optoelectronic devices that can leverage its strong in-plane anisotropy and thickness-dependent band gap.

قيم البحث

اقرأ أيضاً

Weak localization was observed and determined in a black phosphorus (bP) field-effect transistor 65 nm thick. The weak localization behaviour was found to be in excellent agreement with the Hikami-Larkin-Nagaoka model for fields up to 1~T, from which characteristic scattering lengths could be inferred. The dephasing length $L_phi$ was found to increase linearly with increasing hole density attaining a maximum value of 55 nm at a hole density of approximately $10^{13} cm^{-2}$ inferred from the Hall effect. The temperature dependence of $L_phi$ was also investigated and above 1~K, it was found to decrease weaker than the $L_phi propto T^{-frac{1}{2}}$ dependence characteristic of electron-electron scattering in the presence of elastic scattering in two dimensions. Rather, the observed power law was found to be close to that observed previously in other quasi-one-dimensional systems such as metallic nanowires and carbon nanotubes. We attribute our result to the crystal structure of bP which host a `puckered honeycomb lattice forming a strongly anisotropic medium
We report about the energy and momentum resolved optical response of black phosphorus (BP) in its bulk form. Along the armchair direction of the puckered layers we find a highly dispersive mode that is trongly suppressed in the perpendicular (zig-zag ) direction. This mode emerges out of the single-particle continuum for finite values of momentum and is therefore interpreted as an exciton. We argue that this exciton, which has already been predicted theoretically for phosphorene -- the monolayer form of BP -- can be detected by conventional optical spectroscopy in the two-dimensional case and might pave the way for optoelectronic applications of this emerging material.
87 - V. Ryzhii , T. Otsuji , M. Ryzhii 2019
We propose and evaluate the heterostructure based on the graphene-layer (GL) with the lateral electron injection from the side contacts and the hole vertical injection via the black phosphorus layer (PL) (p$^+$PL-PL-GL heterostructure). Due to a rela tively small energy of the holes injected from the PL into the GL (about 100 meV, smaller than the energy of optical phonons in the GL which is about 200 meV), the hole injection can effectively cool down the two-dimensional electron-hole plasma in the GL. This simplifies the realization of the interband population inversion and the achievement of the negative dynamic conductivity in the terahertz (THz) frequency range enabling the amplification of the surface plasmon modes. The later can lead to the plasmon lasing. The conversion of the plasmons into the output radiation can be used for a new types of the THz sources.
Semi-metallic graphene and semiconducting monolayer transition metal dichalcogenides (TMDCs) are the two-dimensional (2D) materials most intensively studied in recent years. Recently, black phosphorus emerged as a promising new 2D material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form, and its unique properties at the truly 2D quantum confinement have yet to be demonstrated. Here, we reveal highly anisotropic and tightly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centers around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. In addition, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of around 0.9 eV, consistent with theoretical results based on first-principles. The experimental observation of highly anisotropic, bright excitons with exceedingly large binding energy not only opens avenues for the future explorations of many-electron effects in this unusual 2D material, but also suggests a promising future in optoelectronic devices such as on-chip infrared light sources.
Resistivity measurements of a few-layer black phosphorus (bP) crystal in parallel magnetic fields up to 45 T are reported as a function of the angle between the in-plane field and the source-drain (S-D) axis of the device. The crystallographic direct ions of the bP crystal were determined by Raman spectroscopy, with the zigzag axis found within 5{deg} of the S-D axis, and the armchair axis in the orthogonal planar direction. A transverse magneto-resistance (TMR) as well as a classically-forbidden longitudinal magneto-resistance (LMR) are observed. Both are found to be strongly anisotropic and non-monotonic with increasing in-plane field. Surprisingly, the relative magnitude (in %) of the positive LMR is larger than the TMR above $sim$32 T. Considering the known anisotropy of bP whose zigzag and armchair effective masses differ by a factor of approximately seven, our experiment strongly suggests this LMR to be a consequence of the anisotropic Fermi surface of bP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا