ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of the color diversity around maximum light in Type Ia supernovae

115   0   0.0 ( 0 )
 نشر من قبل Regis Cartier
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Regis Cartier




اسأل ChatGPT حول البحث

From a sample of 12 well-observed Type Ia supernovae, we find clear evidence of correlations between early phase (U-B), (V-R), and (V-I) colors and the velocity shifts of the [Fe II] lambda 7155 and [Ni II] lambda 7378 nebular lines measured from late-phase spectra. As these lines are thought to trace the ashes of the initial deflagration process, our findings provide additional support to the new paradigm of off-center explosions in Type Ia supernovae, and we interpret these correlations as viewing angle effects in the observed colors. We also show that the nebular velocity shifts are related to the strength and width of the Ca II H&K and IR-triplet lines near-maximum light. The evidence presented here implies that the viewing angle must be taken into account when deriving extinction values and distances in future cosmological studies based on Type Ia supernovae.



قيم البحث

اقرأ أيضاً

We study the spectral diversity of Type Ia supernovae (SNe Ia) at maximum light using high signal-to-noise spectrophotometry of 173 SNe Ia from the Nearby Supernova Factory. We decompose the diversity of these spectra into different extrinsic and int rinsic components, and we construct a nonlinear parameterization of the intrinsic diversity of SNe Ia that preserves pairings of twin SNe Ia. We call this parameterization the Twins Embedding. Our methodology naturally handles highly nonlinear variability in spectra, such as changes in the photosphere expansion velocity, and uses the full spectrum rather than being limited to specific spectral line strengths, ratios or velocities. We find that the time evolution of SNe Ia near maximum light is remarkably similar, with 84.6% of the variance in common to all SNe Ia. After correcting for brightness and color, the intrinsic variability of SNe Ia is mostly restricted to specific spectral lines, and we find intrinsic dispersions as low as ~0.02 mag between 6600 and 7200 A. With a nonlinear three-dimensional model plus one dimension for color, we can explain 89.2% of the intrinsic diversity in our sample of SNe Ia, which includes several different kinds of peculiar SNe Ia. A linear model requires seven dimensions to explain a comparable fraction of the intrinsic diversity. We show how a wide range of previously-established indicators of diversity in SNe Ia can be recovered from the Twins Embedding. In a companion article, we discuss how these results an be applied to standardization of SNe Ia for cosmology.
It has been reported that the extinction law for Type Ia Supernovae (SNe Ia) may be different from the one in the Milky Way, but the intrinsic color of SNe Ia and the dust extinction are observationally mixed. In this study, we examine photometric pr operties of SNe Ia in the nearby universe ($z lesssim 0.04$) to investigate the SN Ia intrinsic color and the dust extinction. We focus on the Branch spectroscopic classification of 34 SNe Ia and morphological types of host galaxies. We carefully study their distribution of peak colors on the $B-V$, $V-R$ color-color diagram, as well as the color excess and absolute magnitude deviation from the stretch-color relation of the bluest SNe Ia. We find that SNe Ia which show the reddest color occur in early-type spirals and the trend holds when divided into Branch sub-types. The dust extinction becomes close to the Milky-Way like extinction if we exclude some peculiar red Broad Line (BL) sub-type SNe Ia. Furthermore, two of these red BLs occur in elliptical galaxies, less-dusty environment, suggesting intrinsic color diversity in BL sub-type SNe Ia.
We present 2603 spectra of 462 nearby Type Ia supernovae (SN Ia) obtained during 1993-2008 through the Center for Astrophysics Supernova Program. Most of the spectra were obtained with the FAST spectrograph at the FLWO 1.5m telescope and reduced in a consistent manner, making data set well suited for studies of SN Ia spectroscopic diversity. We study the spectroscopic and photometric properties of SN Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SN Ia with broader lines. Based on the evolution of the characteristic Si II 6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ~0 to ~400 km/s/day considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B-V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and report new detections of C II 6580 in 23 early-time spectra. The frequency of C II detections is not higher in SN Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SN Ia, we find no relation between the FWHM of the iron emission feature at ~4700 A and Dm15(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent on the kinetic energy of the explosion for most SN Ia. Finally, we confirm the correlation of velocity shifts in some nebular lines with the intrinsic B-V color of SN Ia at maximum light, although several outliers suggest a possible non-monotonic behavior for the largest blueshifts.
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse ex plosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the class as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag/day during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا