ﻻ يوجد ملخص باللغة العربية
The design of decoding algorithms is a significant technological component in the development of fault-tolerant quantum computers. Often design of quantum decoders is inspired by classical decoding algorithms, but there are no general principles for building quantum decoders from classical decoders. Given any pair of classical codes, we can build a quantum code using the hypergraph product, yielding a hypergraph product code. Here we show we can also lift the decoders for these classical codes. That is, given oracle access to a minimum weight decoder for the relevant classical codes, the corresponding $[[n,k,d]]$ quantum code can be efficiently decoded for any error of weight smaller than $(d-1)/2$. The quantum decoder requires only $O(k)$ oracle calls to the classical decoder and $O(n^2)$ classical resources. The lift and the correctness proof of the decoder have a purely algebraic nature that draws on the discovery of some novel homological invariants of the hypergraph product codespace. While the decoder works perfectly for adversarial errors, it is not suitable for more realistic stochastic noise models and therefore can not be used to establish an error correcting threshold.
Belief-propagation (BP) decoders play a vital role in modern coding theory, but they are not suitable to decode quantum error-correcting codes because of a unique quantum feature called error degeneracy. Inspired by an exact mapping between BP and de
Homological product codes are a class of codes that can have improved distance while retaining relatively low stabilizer weight. We show how to build union-find decoders for these codes, using a union-find decoder for one of the codes in the product
Neural decoders were introduced as a generalization of the classic Belief Propagation (BP) decoding algorithms, where the Trellis graph in the BP algorithm is viewed as a neural network, and the weights in the Trellis graph are optimized by training
In this paper, we address the design of high spectral-efficiency Barnes-Wall (BW) lattice codes which are amenable to low-complexity decoding in additive white Gaussian noise (AWGN) channels. We propose a new method of constructing complex BW lattice
Tail-biting convolutional codes extend the classical zero-termination convolutional codes: Both encoding schemes force the equality of start and end states, but under the tail-biting each state is a valid termination. This paper proposes a machine-le