ترغب بنشر مسار تعليمي؟ اضغط هنا

Data Augmentation by Concatenation for Low-Resource Translation: A Mystery and a Solution

63   0   0.0 ( 0 )
 نشر من قبل Toan Q. Nguyen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate the driving factors behind concatenation, a simple but effective data augmentation method for low-resource neural machine translation. Our experiments suggest that discourse context is unlikely the cause for the improvement of about +1 BLEU across four language pairs. Instead, we demonstrate that the improvement comes from three other factors unrelated to discourse: context diversity, length diversity, and (to a lesser extent) position shifting.

قيم البحث

اقرأ أيضاً

Data augmentation techniques have been widely used to improve machine learning performance as they enhance the generalization capability of models. In this work, to generate high quality synthetic data for low-resource tagging tasks, we propose a nov el augmentation method with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.
99 - Linghui Meng , Jin Xu , Xu Tan 2021
In this paper, we propose MixSpeech, a simple yet effective data augmentation method based on mixup for automatic speech recognition (ASR). MixSpeech trains an ASR model by taking a weighted combination of two different speech features (e.g., mel-spe ctrograms or MFCC) as the input, and recognizing both text sequences, where the two recognition losses use the same combination weight. We apply MixSpeech on two popular end-to-end speech recognition models including LAS (Listen, Attend and Spell) and Transformer, and conduct experiments on several low-resource datasets including TIMIT, WSJ, and HKUST. Experimental results show that MixSpeech achieves better accuracy than the baseline models without data augmentation, and outperforms a strong data augmentation method SpecAugment on these recognition tasks. Specifically, MixSpeech outperforms SpecAugment with a relative PER improvement of 10.6$%$ on TIMIT dataset, and achieves a strong WER of 4.7$%$ on WSJ dataset.
116 - Rui Wang , Xu Tan , Renqian Luo 2021
Neural approaches have achieved state-of-the-art accuracy on machine translation but suffer from the high cost of collecting large scale parallel data. Thus, a lot of research has been conducted for neural machine translation (NMT) with very limited parallel data, i.e., the low-resource setting. In this paper, we provide a survey for low-resource NMT and classify related works into three categories according to the auxiliary data they used: (1) exploiting monolingual data of source and/or target languages, (2) exploiting data from auxiliary languages, and (3) exploiting multi-modal data. We hope that our survey can help researchers to better understand this field and inspire them to design better algorithms, and help industry practitioners to choose appropriate algorithms for their applications.
Sign language translation (SLT) is often decomposed into video-to-gloss recognition and gloss-to-text translation, where a gloss is a sequence of transcribed spoken-language words in the order in which they are signed. We focus here on gloss-to-text translation, which we treat as a low-resource neural machine translation (NMT) problem. However, unlike traditional low-resource NMT, gloss-to-text translation differs because gloss-text pairs often have a higher lexical overlap and lower syntactic overlap than pairs of spoken languages. We exploit this lexical overlap and handle syntactic divergence by proposing two rule-based heuristics that generate pseudo-parallel gloss-text pairs from monolingual spoken language text. By pre-training on the thus obtained synthetic data, we improve translation from American Sign Language (ASL) to English and German Sign Language (DGS) to German by up to 3.14 and 2.20 BLEU, respectively.
Transfer learning has yielded state-of-the-art (SoTA) results in many supervised NLP tasks. However, annotated data for every target task in every target language is rare, especially for low-resource languages. We propose UXLA, a novel unsupervised d ata augmentation framework for zero-resource transfer learning scenarios. In particular, UXLA aims to solve cross-lingual adaptation problems from a source language task distribution to an unknown target language task distribution, assuming no training label in the target language. At its core, UXLA performs simultaneous self-training with data augmentation and unsupervised sample selection. To show its effectiveness, we conduct extensive experiments on three diverse zero-resource cross-lingual transfer tasks. UXLA achieves SoTA results in all the tasks, outperforming the baselines by a good margin. With an in-depth framework dissection, we demonstrate the cumulative contributions of different components to its success.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا