ﻻ يوجد ملخص باللغة العربية
Let G be a finite group, and $g geq 2$. We study the locus of genus g curves that admit a G-action of given type, and inclusions between such loci. We use this to study the locus of genus g curves with prescribed automorphism group G. We completely classify these loci for g=3 (including equations for the corresponding curves), and for $g leq 10$ we classify those loci corresponding to large G.
For $4 mid L$ and $g$ large, we calculate the integral Picard groups of the moduli spaces of curves and principally polarized abelian varieties with level $L$ structures. In particular, we determine the divisibility properties of the standard line b
We report on the problem of the existence of complex and real algebraic curves in the plane with prescribed singularities up to analytic and topological equivalence. The question is whether, for a given positive integer $d$ and a finite number of giv
Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under
Any group $G$ gives rise to a 2-group of inner automorphisms, $mathrm{INN}(G)$. It is an old result by Segal that the nerve of this is the universal $G$-bundle. We discuss that, similarly, for every 2-group $G_{(2)}$ there is a 3-group $mathrm{INN}(G
For a relatively minimal surface fibration $f: Xto C$, the equivariant automorphism group of $f$ is, roughly speaking, the group of automorphisms of $X$ preserving the fibration structure. We present a classification of such fibrations of fibre genus