ﻻ يوجد ملخص باللغة العربية
It is well known that the reversibility of Stokes flow makes it difficult for small microorganisms to swim. Inertial effects break this reversibility, allowing new mechanisms of propulsion and feeding. Therefore it is important to estimate the effect of unsteady and fluid inertia on the dynamics of microorganisms in flow. In this work, we show how to translate known inertial effects for non-motile organisms to motile ones, from passive to active particles. The method relies on a trick used earlier by Legendre and Magnaudet to deduce inertial corrections to the lift force on a bubble from Saffmans results for a solid sphere, using the fact that small inertial effects are determined by the far field of the disturbance flow. The method allows to compute the inertial effect of unsteady fluid accelerations on motile organisms, and the inertial forces they experience in steady shear flow. We explain why the method fails to describe the effect of convective fluid inertia.
The unsteady, lineal translation of a solid spherical particle through viscoelastic fluids described by the Johnson-Segalman and Giesekus models is studied analytically. Solutions for the pressure and velocity fields as well as the force on the parti
We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a long-range attractive and a short-range repulsive potential fiel
Clustering of inertial particles is important for many types of astrophysical and geophysical turbulence, but it has been studied predominately for incompressible flows. Here we study compressible flows and compare clustering in both compressively (i
In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for th
A liquid droplet, immersed into a Newtonian fluid, can be propelled solely by internal flow. In a simple model, this flow is generated by a collection of point forces, which represent externally actuated devices or model autonomous swimmers. We work