ترغب بنشر مسار تعليمي؟ اضغط هنا

Instability of particle inertial migration in shear flow

115   0   0.0 ( 0 )
 نشر من قبل Evgeny Asmolov S
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for the critical Stokes number that determines the onset of instable equilibrium. We also present results of lattice Boltzmann simulations for spherical particles and prolate spheroids to validate the analysis. Our work provides a simple explanation of several unusual phenomena observed in earlier experiments and computer simulations, but never interpreted before in terms of the unstable equilibrium.

قيم البحث

اقرأ أيضاً

To understand the behavior of composite fluid particles such as nucleated cells and double-emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric partic le-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimenstion-two point. We adopt a dynamical system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations.
The mechanical deformability of single cells is an important indicator for various diseases such as cancer, blood diseases and inflammation. Lab-on-a-chip devices allow to separate such cells from healthy cells using hydrodynamic forces. We perform h ydrodynamic simulations based on the lattice-Boltzmann method and study the behavior of an elastic capsule in a microfluidic channel flow in the inertial regime. While inertial lift forces drive the capsule away from the channel center, its deformability favors migration in the opposite direction. Balancing both migration mechanisms, a deformable capsule assembles at a specific equilibrium distance depending on its size and deformability. We find that this equilibrium distance is nearly independent of the channel Reynolds number and falls on a single master curve when plotted versus the Laplace number. We identify a similar master curve for varying particle radius. In contrast, the actual deformation of a capsule strongly depends on the Reynolds number. The lift-force profiles behave in a similar manner as those for rigid particles. Using the Saffman effect, the capsules equilibrium position can be controlled by an external force along the channel axis. While rigid particles move to the center when slowed down, very soft capsules show the opposite behavior. Interestingly, for a specific control force particles are focused on the same equilibrium position independent of their deformability.
Extremely small amounts of surface-active contaminants are known to drastically modify the hydrodynamic response of the water-air interface. Surfactant concentrations as low as a few thousand molecules per square micron are sufficient to eventually i nduce complete stiffening. In order to probe the shear response of a water-air interface, we design a radial flow experiment that consists in an upward water jet directed to the interface. We observe that the standard no-slip effect is often circumvented by an azimuthal instability with the occurence of a vortex pair. Supported by numerical simulations, we highlight that the instability occurs in the (inertia-less) Stokes regime and is driven by surfactant advection by the flow. The latter mechanism is suggested as a general feature in a wide variety of reported and yet unexplained observations.
We study the dynamics of flow-networks in porous media using a pore-network model. First, we consider a class of erosion dynamics assuming a constitutive law depending on flow rate, local velocities, or shear stress at the walls. We show that dependi ng on the erosion law, the flow may become uniform and homogenized or become unstable and develop channels. By defining an order parameter capturing these different behaviors we show that a phase transition occurs depending on the erosion dynamics. Using a simple model, we identify quantitative criteria to distinguish these regimes and correctly predict the fate of the network, and discuss the experimental relevance of our result.
A concentrated, vertical monolayer of identical spherical squirmers, which may be bottom-heavy, and which are subjected to a linear shear flow, is modelled computationally by two different methods: Stokesian dynamics, and a lubrication-theory-based m ethod. Inertia is negligible. The aim is to compute the effective shear viscosity and, where possible, the normal stress differences as functions of the areal fraction of spheres $phi$, the squirming parameter $beta$ (proportional to the ratio of a squirmers active stresslet to its swimming speed), the ratio $Sq$ of swimming speed to a typical speed of the shear flow, the bottom-heaviness parameter $G_{bh}$, the angle $alpha$ that the shear flow makes with the horizontal, and two parameters that define the repulsive force that is required computationally to prevent the squirmers from overlapping when their distance apart is less than a critical value $epsilon a$, where $epsilon$ is very small and $a$ is the sphere radius. The Stokesian dynamics method allows the rheological quantities to be computed for values of $phi$ up to $0.75$; the lubrication-theory method can be used for $phi> 0.5$. A major finding of this work is that, despite very different assumptions, the two methods of computation give overlapping results for viscosity as a function of $phi$ in the range $0.5 < phi < 0.75$. This suggests that lubrication theory, based on near-field interactions alone, contains most of the relevant physics, and that taking account of interactions with more distant particles than the nearest is not essential to describe the dominant physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا