ﻻ يوجد ملخص باللغة العربية
Oscillons are long-lived, slowly radiating solutions of nonlinear classical relativistic field theories. Recently it was discovered that in one spatial dimension their decay may proceed in staccato bursts. Here we perform a systematic numerical study to demonstrate that although this behaviour is not confined to one spatial dimension, it quickly becomes unobservable when the dimension of space is increased. To complete the picture we also present explicit results on the dimension dependence of the collapse instability observed for three-dimensional oscillons.
We study the decay of large amplitude, almost periodic breather-like states in a deformed sine-Gordon model in one spatial dimension. We discover that these objects decay in a staggered fashion via a series of transitions, during which higher harmoni
In the context of quantum field theory (QFT), unstable particles are associated with complex-valued poles of two-body scattering matrices in the unphysical sheet of rapidity space. The Breit-Wigner formula relates this pole to the mass and life-time
Oscillons are extremely long-lived, spatially-localized field configurations in real-valued scalar field theories that slowly lose energy via radiation of scalar waves. Before their eventual demise, oscillons can pass through (one or more) exceptiona
Working within the path-integral framework we first establish a duality between the partion functions of two $U(1)$ gauge theories with a theta term in $d=4$ space-time dimensions. Then, after a dimensional reduction to $d=3$ dimensions we arrive to
We study behaviour of the critical $O(N)$ vector model with quartic interaction in $2 leq d leq 6$ dimensions to the next-to-leading order in the large-$N$ expansion. We derive and perform consistency checks that provide an evidence for the existence