ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep learning with self-supervision and uncertainty regularization to count fish in underwater images

133   0   0.0 ( 0 )
 نشر من قبل Albert Clap\\'es
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Effective conservation actions require effective population monitoring. However, accurately counting animals in the wild to inform conservation decision-making is difficult. Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive but created a need to process and analyse this data efficiently. Counting animals from such data is challenging, particularly when densely packed in noisy images. Attempting this manually is slow and expensive, while traditional computer vision methods are limited in their generalisability. Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals. To this end, we employ deep learning, with a density-based regression approach, to count fish in low-resolution sonar images. We introduce a large dataset of sonar videos, deployed to record wild mullet schools (Mugil liza), with a subset of 500 labelled images. We utilise abundant unlabelled data in a self-supervised task to improve the supervised counting task. For the first time in this context, by introducing uncertainty quantification, we improve model training and provide an accompanying measure of prediction uncertainty for more informed biological decision-making. Finally, we demonstrate the generalisability of our proposed counting framework through testing it on a recent benchmark dataset of high-resolution annotated underwater images from varying habitats (DeepFish). From experiments on both contrasting datasets, we demonstrate our network outperforms the few other deep learning models implemented for solving this task. By providing an open-source framework along with training data, our study puts forth an efficient deep learning template for crowd counting aquatic animals thereby contributing effective methods to assess natural populations from the ever-increasing visual data.

قيم البحث

اقرأ أيضاً

Given a sufficiently large training dataset, it is relatively easy to train a modern convolution neural network (CNN) as a required image classifier. However, for the task of fish classification and/or fish detection, if a CNN was trained to detect o r classify particular fish species in particular background habitats, the same CNN exhibits much lower accuracy when applied to new/unseen fish species and/or fish habitats. Therefore, in practice, the CNN needs to be continuously fine-tuned to improve its classification accuracy to handle new project-specific fish species or habitats. In this work we present a labelling-efficient method of training a CNN-based fish-detector (the Xception CNN was used as the base) on relatively small numbers (4,000) of project-domain underwater fish/no-fish images from 20 different habitats. Additionally, 17,000 of known negative (that is, missing fish) general-domain (VOC2012) above-water images were used. Two publicly available fish-domain datasets supplied additional 27,000 of above-water and underwater positive/fish images. By using this multi-domain collection of images, the trained Xception-based binary (fish/not-fish) classifier achieved 0.17% false-positives and 0.61% false-negatives on the projects 20,000 negative and 16,000 positive holdout test images, respectively. The area under the ROC curve (AUC) was 99.94%.
Aquaculture industries rely on the availability of accurate fish body measurements, e.g., length, width and mass. Manual methods that rely on physical tools like rulers are time and labour intensive. Leading automatic approaches rely on fully-supervi sed segmentation models to acquire these measurements but these require collecting per-pixel labels -- also time consuming and laborious: i.e., it can take up to two minutes per fish to generate accurate segmentation labels, almost always requiring at least some manual intervention. We propose an automatic segmentation model efficiently trained on images labeled with only point-level supervision, where each fish is annotated with a single click. This labeling process requires significantly less manual intervention, averaging roughly one second per fish. Our approach uses a fully convolutional neural network with one branch that outputs per-pixel scores and another that outputs an affinity matrix. We aggregate these two outputs using a random walk to obtain the final, refined per-pixel segmentation output. We train the entire model end-to-end with an LCFCN loss, resulting in our A-LCFCN method. We validate our model on the DeepFish dataset, which contains many fish habitats from the north-eastern Australian region. Our experimental results confirm that A-LCFCN outperforms a fully-supervised segmentation model at fixed annotation budget. Moreover, we show that A-LCFCN achieves better segmentation results than LCFCN and a standard baseline. We have released the code at url{https://github.com/IssamLaradji/affinity_lcfcn}.
Uses of underwater videos to assess diversity and abundance of fish are being rapidly adopted by marine biologists. Manual processing of videos for quantification by human analysts is time and labour intensive. Automatic processing of videos can be e mployed to achieve the objectives in a cost and time-efficient way. The aim is to build an accurate and reliable fish detection and recognition system, which is important for an autonomous robotic platform. However, there are many challenges involved in this task (e.g. complex background, deformation, low resolution and light propagation). Recent advancement in the deep neural network has led to the development of object detection and recognition in real time scenarios. An end-to-end deep learning-based architecture is introduced which outperformed the state of the art methods and first of its kind on fish assessment task. A Region Proposal Network (RPN) introduced by an object detector termed as Faster R-CNN was combined with three classification networks for detection and recognition of fish species obtained from Remote Underwater Video Stations (RUVS). An accuracy of 82.4% (mAP) obtained from the experiments are much higher than previously proposed methods.
Effectively and efficiently deploying graph neural networks (GNNs) at scale remains one of the most challenging aspects of graph representation learning. Many powerful solutions have only ever been validated on comparatively small datasets, often wit h counter-intuitive outcomes -- a barrier which has been broken by the Open Graph Benchmark Large-Scale Challenge (OGB-LSC). We entered the OGB-LSC with two large-scale GNNs: a deep transductive node classifier powered by bootstrapping, and a very deep (up to 50-layer) inductive graph regressor regularised by denoising objectives. Our models achieved an award-level (top-3) performance on both the MAG240M and PCQM4M benchmarks. In doing so, we demonstrate evidence of scalable self-supervised graph representation learning, and utility of very deep GNNs -- both very important open issues. Our code is publicly available at: https://github.com/deepmind/deepmind-research/tree/master/ogb_lsc.
Most existing crowd counting methods require object location-level annotation, i.e., placing a dot at the center of an object. While being simpler than the bounding-box or pixel-level annotation, obtaining this annotation is still labor-intensive and time-consuming especially for images with highly crowded scenes. On the other hand, weaker annotations that only know the total count of objects can be almost effortless in many practical scenarios. Thus, it is desirable to develop a learning method that can effectively train models from count-level annotations. To this end, this paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised). To perform effective training in this scenario, we observe that the direct solution of regressing the integral of density map to the object count is not sufficient and it is beneficial to introduce stronger regularizations on the predicted density map of weakly-annotated images. We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps. Through extensive experiments on existing datasets and a newly proposed dataset, we validate the effectiveness of the proposed weakly-supervised method and demonstrate its superior performance over existing solutions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا