ﻻ يوجد ملخص باللغة العربية
The formation of positive ions of antihydrogen $bar{rm{H}}^+$ via the three body reaction (i) $rm{e}^+ + rm{e}^- + bar{rm{H}} rightarrow rm{e}^- + bar{rm{H}}^+$ is considered. In reaction (i), free positrons $rm{e}^+$ are incident on antihydrogen $bar{rm{H}}$ embedded in a gas of low-energy ($sim $ meV) electrons and, due to the positron-electron interaction, a positron is attached to $bar{rm{H}}$ whereas an electron carries away the energy excess. We compare reaction (i) with two radiative attachment mechanisms. One of them is (ii) spontaneous radiative attachment, in which the ion is formed due to spontaneous emission of a photon by a positron incident on $bar{rm{H}}$. The other is (iii) two-center dileptonic attachment which takes place in the presence of a neighboring atom B and in which an incident positron is attached to $bar{rm{H}}$ via resonant transfer of energy to B with its subsequent relaxation through spontaneous radiative decay. It is shown that reaction (i) can strongly dominate over mechanisms (ii) and (iii) for positron energies below $0.1$ eV. It is also shown that at the energies considered reaction (i) will not be influenced by annihilation and that the reaction $rm{e}^+ + rm{e}^+ + bar{rm{H}} rightarrow rm{e}^+ + bar{rm{H}}^+$ has a vanishingly small rate compared to reaction (i).
We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highl
A compact, few-parametric, physically adequate, 3-term variational trial function is used to calculate with high accuracy the energy of the ground state ${}^3Pi_u$ of the hydrogen molecule ${rm H}_2$ in strong magnetic field ${bf B}$ in the range $5t
Scaling relations between asteroseismic quantities and stellar parameters are essential tools for studying stellar structure and evolution. We will address two of them, namely, the relation between the large frequency separation ($Delta u$) and the
The astrophysical $^{3}{rm He}(alpha, gamma)^{7}{rm Be}$ and $^{3}{rm H}(alpha, gamma)^{7}{rm Li}$ direct capture processes are studied in the framework of the two-body model with the potentials of a simple Gaussian form, which describe correctly the
Highly accurate variational calculations, based on a few-parameter, physically adequate trial function, are carried out for the hydrogen molecule hh in inclined configuration, where the molecular axis forms an angle $theta$ with respect to the direct