ﻻ يوجد ملخص باللغة العربية
A compact, few-parametric, physically adequate, 3-term variational trial function is used to calculate with high accuracy the energy of the ground state ${}^3Pi_u$ of the hydrogen molecule ${rm H}_2$ in strong magnetic field ${bf B}$ in the range $5times10^{10}, {rm G} leq B leq 10^{13},$G. The nuclei (protons) are assumed as infinitely massive (BO appproximation of zero order) and situated along the magnetic field line (parallel configuration).
Highly accurate variational calculations, based on a few-parameter, physically adequate trial function, are carried out for the hydrogen molecule hh in inclined configuration, where the molecular axis forms an angle $theta$ with respect to the direct
We present an accurate quantum mechanical study of molecule-molecule collisions in the presence of a magnetic field. The work focusses on the analysis of elastic scattering and spin relaxation in collisions of O2(3Sigma_g) molecules at cold (~0.1 K)
The formation of positive ions of antihydrogen $bar{rm{H}}^+$ via the three body reaction (i) $rm{e}^+ + rm{e}^- + bar{rm{H}} rightarrow rm{e}^- + bar{rm{H}}^+$ is considered. In reaction (i), free positrons $rm{e}^+$ are incident on antihydrogen $ba
We have carried out calculations of the triple-differential cross section for one-photon double ionization of molecular hydrogen for a central photon energy of $75$~eV, using a fully {it ab initio}, nonperturbative approach to solve the time-dependen
Some time ago we have derived from the QCD Lagrangian an equation of state (EOS) for the cold quark matter, which can be considered an improved version of the MIT bag model EOS. Compared to the latter, our equation of state reaches higher values of t