ﻻ يوجد ملخص باللغة العربية
In this article, we investigate the quantum circuit complexity and entanglement entropy in the recently studied black hole gas framework using the two-mode squeezed states formalism written in arbitrary dimensional spatially flat cosmological Friedmann-Lema$hat{i}$tre-Robertson-Walker (FLRW) background space-time. We compute the various complexity measures and study the evolution of these complexities by following two different prescriptions viz. Covariant matrix method and Nielsens method. Independently, using the two-mode squeezed states formalism we also compute the Renyi and Von-Neumann entanglement entropy, which show an inherent connection between the entanglement entropy and quantum circuit complexity. We study the behaviour of the complexity measures and entanglement entropy separately for three different spatial dimensions and observe various significant different features in three spatial dimensions on the evolution of these quantities with respect to the scale factor. Furthermore, we also study the underlying behaviour of the equilibrium temperature with two of the most essential quantities i.e. rate of change of complexity with scale factor and the entanglement entropy. We observe that irrespective of the spatial dimension, the equilibrium temperature depends quartically on entanglement entropy.
In this paper, we will propose a universal relation between the holographic complexity (dual to a volume in AdS) and the holographic entanglement entropy (dual to an area in AdS). We will explicitly demonstrate that our conjuncture hold for all a met
In this work, we study the computational complexity of massive gravity theory via the Complexity = Action conjecture. Our system contains a particle moving on the boundary of the black hole spacetime. It is dual to inserting a fundamental string in t
Recently in various theoretical works, path-breaking progress has been made in recovering the well-known Page Curve of an evaporating black hole with Quantum Extremal Islands, proposed to solve the long-standing black hole information loss problem re
We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of
$Circuit~ Complexity$, a well known computational technique has recently become the backbone of the physics community to probe the chaotic behaviour and random quantum fluctuations of quantum fields. This paper is devoted to the study of out-of-equil