ﻻ يوجد ملخص باللغة العربية
We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of revivals; this observation provides a practical advantage in information processing. We also show that the complexity saturates much faster than the entanglement entropy in this system, and we provide a physical argument for this. Finally, we demonstrate that complexity is a less sensitive probe of topological order, compared with measures of entanglement.
We study the evolution of holographic complexity of pure and mixed states in $1+1$-dimensional conformal field theory following a local quench using both the complexity equals volume (CV) and the complexity equals action (CA) conjectures. We compare
We propose a charged falling particle in an AdS space as a holographic model of local charged quench generalizing model of arXiv:1302.5703. The quench is followed by evolving currents and inhomogeneous distribution of chemical potential. We derive th
The concepts of operator size and computational complexity play important roles in the study of quantum chaos and holographic duality because they help characterize the structure of time-evolving Heisenberg operators. It is particularly important to
We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent mass
We develop a geometric approach to operator growth and Krylov complexity in many-body quantum systems governed by symmetries. We start by showing a direct link between a unitary evolution with the Liouvillian and the displacement operator of appropri