ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrastive Spatial Reasoning on Multi-View Line Drawings

185   0   0.0 ( 0 )
 نشر من قبل Siyuan Xiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatial reasoning on multi-view line drawings by state-of-the-art supervised deep networks is recently shown with puzzling low performances on the SPARE3D dataset. To study the reason behind the low performance and to further our understandings of these tasks, we design controlled experiments on both input data and network designs. Guided by the hindsight from these experiment results, we propose a simple contrastive learning approach along with other network modifications to improve the baseline performance. Our approach uses a self-supervised binary classification network to compare the line drawing differences between various views of any two similar 3D objects. It enables deep networks to effectively learn detail-sensitive yet view-invariant line drawing representations of 3D objects. Experiments show that our method could significantly increase the baseline performance in SPARE3D, while some popular self-supervised learning methods cannot.

قيم البحث

اقرأ أيضاً

Spatial reasoning is an important component of human intelligence. We can imagine the shapes of 3D objects and reason about their spatial relations by merely looking at their three-view line drawings in 2D, with different levels of competence. Can de ep networks be trained to perform spatial reasoning tasks? How can we measure their spatial intelligence? To answer these questions, we present the SPARE3D dataset. Based on cognitive science and psychometrics, SPARE3D contains three types of 2D-3D reasoning tasks on view consistency, camera pose, and shape generation, with increasing difficulty. We then design a method to automatically generate a large number of challenging questions with ground truth answers for each task. They are used to provide supervision for training our baseline models using state-of-the-art architectures like ResNet. Our experiments show that although convolutional networks have achieved superhuman performance in many visual learning tasks, their spatial reasoning performance on SPARE3D tasks is either lower than average human performance or even close to random guesses. We hope SPARE3D can stimulate new problem formulations and network designs for spatial reasoning to empower intelligent robots to operate effectively in the 3D world via 2D sensors. The dataset and code are available at https://ai4ce.github.io/SPARE3D.
In recent years, multi-view subspace clustering has achieved impressive performance due to the exploitation of complementary imformation across multiple views. However, multi-view data can be very complicated and are not easy to cluster in real-world applications. Most existing methods operate on raw data and may not obtain the optimal solution. In this work, we propose a novel multi-view clustering method named smoothed multi-view subspace clustering (SMVSC) by employing a novel technique, i.e., graph filtering, to obtain a smooth representation for each view, in which similar data points have similar feature values. Specifically, it retains the graph geometric features through applying a low-pass filter. Consequently, it produces a ``clustering-friendly representation and greatly facilitates the downstream clustering task. Extensive experiments on benchmark datasets validate the superiority of our approach. Analysis shows that graph filtering increases the separability of classes.
Previous Online Knowledge Distillation (OKD) often carries out mutually exchanging probability distributions, but neglects the useful representational knowledge. We therefore propose Multi-view Contrastive Learning (MCL) for OKD to implicitly capture correlations of feature embeddings encoded by multiple peer networks, which provide various views for understanding the input data instances. Benefiting from MCL, we can learn a more discriminative representation space for classification than previous OKD methods. Experimental results on image classification demonstrate that our MCL-OKD outperforms other state-of-the-art OKD methods by large margins without sacrificing additional inference cost. Codes are available at https://github.com/winycg/MCL-OKD.
Multi-view network embedding aims at projecting nodes in the network to low-dimensional vectors, while preserving their multiple relations and attribute information. Contrastive learning-based methods have preliminarily shown promising performance in this task. However, most contrastive learning-based methods mostly rely on high-quality graph embedding and explore less on the relationships between different graph views. To deal with these deficiencies, we design a novel node-to-node Contrastive learning framework for Multi-view network Embedding (CREME), which mainly contains two contrastive objectives: Multi-view fusion InfoMax and Inter-view InfoMin. The former objective distills information from embeddings generated from different graph views, while the latter distinguishes different graph views better to capture the complementary information between them. Specifically, we first apply a view encoder to generate each graph view representation and utilize a multi-view aggregator to fuse these representations. Then, we unify the two contrastive objectives into one learning objective for training. Extensive experiments on three real-world datasets show that CREME outperforms existing methods consistently.
Multi-view representation learning captures comprehensive information from multiple views of a shared context. Recent works intuitively apply contrastive learning (CL) to learn representations, regarded as a pairwise manner, which is still scalable: view-specific noise is not filtered in learning view-shared representations; the fake negative pairs, where the negative terms are actually within the same class as the positive, and the real negative pairs are coequally treated; and evenly measuring the similarities between terms might interfere with optimization. Importantly, few works research the theoretical framework of generalized self-supervised multi-view learning, especially for more than two views. To this end, we rethink the existing multi-view learning paradigm from the information theoretical perspective and then propose a novel information theoretical framework for generalized multi-view learning. Guided by it, we build a multi-view coding method with a three-tier progressive architecture, namely Information theory-guided heuristic Progressive Multi-view Coding (IPMC). In the distribution-tier, IPMC aligns the distribution between views to reduce view-specific noise. In the set-tier, IPMC builds self-adjusted pools for contrasting, which utilizes a view filter to adaptively modify the pools. Lastly, in the instance-tier, we adopt a designed unified loss to learn discriminative representations and reduce the gradient interference. Theoretically and empirically, we demonstrate the superiority of IPMC over state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا