ترغب بنشر مسار تعليمي؟ اضغط هنا

I- A hydrodynamical CLONE of the Virgo cluster of galaxies to confirm observationally-driven formation scenarios

87   0   0.0 ( 0 )
 نشر من قبل Jenny Sorce Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At ~16-17Mpc from us, the Virgo cluster is a formidable source of information to study cluster formation and galaxy evolution in rich environments. Several observationally-driven formation scenarios arose within the past decade to explain the properties of galaxies that entered the cluster recently and the nature of the last significant merger that the cluster underwent. Confirming these scenarios requires extremely faithful numerical counterparts of the cluster. This paper presents the first CLONE, Constrained LOcal and Nesting Environment, simulation of the Virgo cluster within a ~15Mpc radius sphere. This cosmological hydrodynamical simulation, with feedback from supernovae and active galactic nuclei, with a ~3x10^7Msun dark matter particle mass and a minimum cell size of 350pc in the zoom region, reproduces Virgo within its large scale environment unlike a random cluster simulation. Overall the distribution of the simulated galaxy population matches the observed one including M87. The simulated cluster formation reveals exquisite agreements with observationally-driven scenarios: within the last Gigayear, about 300 small galaxies (M*>10^7Msun) entered the cluster, most of them within the last 500Myr. The last significant merger event occurred about 2 Gigayears ago: a group with a tenth of the mass of todays cluster entered from the far side as viewed from the Milky Way. This excellent numerical replica of Virgo will permit studying different galaxy type evolution (jellyfish, backsplash, etc.) as well as feedback phenomena in the cluster core via unbiased comparisons between simulated and observed galaxies and hot gas phase profiles to understand this great physics laboratory.



قيم البحث

اقرأ أيضاً

153 - Joel C. Roediger 2011
We use a combination of deep optical (gri) and near-infrared (H) photometry to study the radially-resolved colours of a broad sample of 300 Virgo cluster galaxies. For most galaxy types, we find that the median g-H colour gradient is either flat (gas -poor giants and gas-rich dwarfs) or negative (i.e., colours become bluer with increasing radius; gas-poor dwarfs, spirals, and gas-poor peculiars). Later-type galaxies typically exhibit more negative gradients than early-types. Given the lack of a correlation between the central colours and axis ratios of Virgo spiral galaxies, we argue that dust likely plays a small role, if at all, in setting those colour gradients. We search for possible correlations between galaxy colour and photometric structure or environment and find that the Virgo galaxy colours become redder with increasing concentration, luminosity and surface brightness, while no dependence with cluster-centric radius or local galaxy density is detected (over a range of ~2 Mpc and ~3-16 Mpc^-2, respectively). However, the colours of gas-rich Virgo galaxies do correlate with neutral gas deficiency, such that these galaxies become redder with higher deficiencies. Comparisons with stellar population models suggest that these colour gradients arise principally from variations in stellar metallicity within these galaxies, while age variations only make a significant contribution to the colour gradients of Virgo irregulars. A detailed stellar population analysis based on this material is presented in Roediger et al (2011b; arXiv:1011.3511).
232 - E. Toloba 2010
We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving their angular momentum.
126 - Joel C. Roediger 2010
We use a combination of deep optical and near-infrared light profiles for a morphologically diverse sample of Virgo cluster galaxies to study the radially-resolved stellar populations of cluster galaxies over a wide range of galaxy structure. We find that, in the median, the age gradients of Virgo galaxies are either flat (lenticulars and Sa-Sb spirals) or positive (ellipticals, Sbc+Sc spirals, gas-rich dwarfs, and irregulars), while all galaxy types have a negative median metallicity gradient. Comparison of the galaxy stellar population diagnostics (age, metallicity, and gradients thereof) against structural and environmental parameters also reveals that the ages of gas-rich systems depend mainly on their atomic gas deficiencies. Conversely, the metallicities of Virgo gas-poor galaxies depend on their concentrations, luminosities, and surface brightnesses. The stellar population gradients of all Virgo galaxies exhibit no dependence on either their structure or environment. We interpret these stellar population data for Virgo galaxies in the context of popular formation and evolution scenarios, and suggest that gas-poor giants grew hierarchically (through dissipative starbursts), gas-poor dwarfs have descended from at least two different production channels (e.g., environmental transformation and merging), while spirals formed inside-out, but with star formation in the outskirts of a significant fraction of the population having been quenched due to ram pressure stripping. (Abridged)
We report the discovery of 11 very faint (r< 23), low surface brightness ({mu}_r< 27 mag/arcsec^2) dwarf galaxies in one deep field in the Virgo cluster, obtained by the prime focus cameras (LBC) at the Large Binocular Telescope (LBT). These extend o ur previous sample to reach a total number of 27 galaxies in a field of just of 0.17 deg^2 located at a median distance of 390 kpc from the cluster center. Their association with the Virgo cluster is supported by their separate position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. For a significant fraction (26%) of the sample the association to the cluster is confirmed by spectroscopic follow-up. We show that the mere abundance of satellite galaxies corresponding to our observed number in the target field provides extremely tight constraints on Dark Matter models with suppressed power spectrum compared to the Cold Dark Matter case, independently of the galaxy luminosity distribution. In particular, requiring the observed number of satellite galaxies not to exceed the predicted abundance of Dark Matter sub-halos yields a limit m_X >3 keV at 1-{sigma} and m_X > 2.3 keV at 2-{sigma} confidence level for the mass of thermal Warm Dark Matter particles. Such a limit is competitive with other limits set by the abundance of ultra-faint satellite galaxies in the Milky Way, is completely independent of baryon physics involved in galaxy formation, and has the potentiality for appreciable improvements with next observations. We extend our analysis to Dark Matter models based on sterile neutrinos, showing that our observations set tight constraints on the combination of sterile neutrino mass m_{ u} and mixing parameter sin^2(2{theta}). We discuss the robustness of our results with respect to systematics.
We present results from Suzaku Key Project observations of the Virgo Cluster, the nearest galaxy cluster to us, mapping its X-ray properties along four long `arms extending beyond the virial radius. The entropy profiles along all four azimuths increa se with radius, then level out beyond $0.5r_{200}$, while the average pressure at large radii exceeds Planck Sunyaev-Zeldovich measurements. These results can be explained by enhanced gas density fluctuations (clumping) in the clusters outskirts. Using a standard Navarro, Frenk and White (1997) model, we estimate a virial mass, radius, and concentration parameter of $M_{200}=1.05pm0.02times10^{14}$ M$_odot$, $r_{200}=974.1pm5.7$ kpc, and $c = 8.8 pm0.2$, respectively. The inferred cumulative baryon fraction exceeds the cosmic mean at $rsim r_{200}$ along the major axis, suggesting enhanced gas clumping possibly sourced by a candidate large-scale structure filament along the north-south direction. The Suzaku data reveal a large-scale sloshing pattern, with two new cold fronts detected at radii of 233 kpc and 280 kpc along the western and southern arms, respectively. Two high-temperature regions are also identified 1 Mpc towards the south and 605 kpc towards the west of M87, likely representing shocks associated with the ongoing cluster growth. Although systematic uncertainties in measuring the metallicity for low temperature plasma remain, the data at large radii appear consistent with a uniform metal distribution on scales of $sim 90times180$ kpc and larger, providing additional support for the early chemical enrichment scenario driven by galactic winds at redshifts of 2-3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا