ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

228   0   0.0 ( 0 )
 نشر من قبل Elisa Toloba
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Toloba




اسأل ChatGPT حول البحث

We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving their angular momentum.



قيم البحث

اقرأ أيضاً

194 - E. Toloba 2012
We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includ es rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light radii of dEs is on average >~ 42% (uncertainties of 17% in the K band and 20% in the V band), fully consistent with an independent estimate in an earlier paper in this series. We also find that dEs in the size-luminosity relation in the near-infrared, like in the optical, are offset from early-type galaxies, but seem to be consistent with late-type galaxies. We thus conclude that the scaling relations show that dEs are different from Es, and that they further strengthen our previous findings that dEs are closer to and likely formed from late-type galaxies.
151 - Joel C. Roediger 2011
We use a combination of deep optical (gri) and near-infrared (H) photometry to study the radially-resolved colours of a broad sample of 300 Virgo cluster galaxies. For most galaxy types, we find that the median g-H colour gradient is either flat (gas -poor giants and gas-rich dwarfs) or negative (i.e., colours become bluer with increasing radius; gas-poor dwarfs, spirals, and gas-poor peculiars). Later-type galaxies typically exhibit more negative gradients than early-types. Given the lack of a correlation between the central colours and axis ratios of Virgo spiral galaxies, we argue that dust likely plays a small role, if at all, in setting those colour gradients. We search for possible correlations between galaxy colour and photometric structure or environment and find that the Virgo galaxy colours become redder with increasing concentration, luminosity and surface brightness, while no dependence with cluster-centric radius or local galaxy density is detected (over a range of ~2 Mpc and ~3-16 Mpc^-2, respectively). However, the colours of gas-rich Virgo galaxies do correlate with neutral gas deficiency, such that these galaxies become redder with higher deficiencies. Comparisons with stellar population models suggest that these colour gradients arise principally from variations in stellar metallicity within these galaxies, while age variations only make a significant contribution to the colour gradients of Virgo irregulars. A detailed stellar population analysis based on this material is presented in Roediger et al (2011b; arXiv:1011.3511).
We use dust scaling relations to investigate the hypothesis that Virgo cluster transition-type dwarfs are infalling star-forming field galaxies, which is argued based on their optical features (e.g. disks, spiral arms, bars) and kinematic properties similar to late-type galaxies. After their infall, environmental effects gradually transform them into early-type galaxies through the removal of their interstellar medium and quenching of all star formation activity. In this paper, we aim to verify whether this hypothesis holds using far-infrared diagnostics based on Herschel observations of the Virgo cluster taken as part of the Herschel Virgo Cluster Survey (HeViCS). We select transition-type objects in the nearest cluster, Virgo, based on spectral diagnostics indicative for their residual or ongoing star formation. We detect dust Md ~ 10^{5-6} Msun in 36% of the transition-type dwarfs located on the high end of the stellar mass distribution. This suggests that the dust reservoirs present in non-detections fall just below the Herschel detection limit (< 1.1x10^5 Msun). Dust scaling relations support the hypothesis of a transformation between infalling late-type galaxies to quiescent low-mass spheroids governed by environmental effects, with dust-to-stellar mass fractions for transition-type dwarfs in between values characteristic for late-type objects and the lower dust fractions observed in early-type galaxies. Several transition-type dwarfs demonstrate blue central cores, hinting at the radially outside-in removal of gas and quenching of star formation activity. The fact that dust is also confined to the inner regions suggests that metals are stripped in the outer regions along with the gas. In the scenario of most dust being stripped from the galaxy along with the gas, we argue that... (abridged)
[Abridged] Using VLT/FORS2 spectroscopy, we have studied the properties of the central stellar populations of a sample of 38 nucleated early-type dwarf (dE) galaxies in the Virgo Cluster. We find that these galaxies do not exhibit the same average st ellar population characteristics for different morphological subclasses. The nucleated galaxies without discs are older and more metal poor than the dEs with discs . The alpha-element abundance ratio appears consistent with the solar value for both morphological types. Besides a well-defined relation of metallicity and luminosity, we also find a clear anti-correlation between age and luminosity. More specifically, there appears to be a bimodality: brighter galaxies, including the discy ones, exhibit significantly younger ages than fainter dEs. Therefore, it appears less likely that fainter and brighter dEs have experienced the same evolutionary history, as the well-established trend of decreasing average stellar age when going from the most luminous ellipticals towards low-luminosity Es and bright dEs is broken here. The older and more metal-poor dEs could have had an early termination of star formation activity, possibly being primordial galaxies in the sense that they have formed along with the protocluster or experienced very early infall. By contrast, the younger and relatively metal-rich brighter dEs, most of which have discs, might have undergone structural transformation of infalling disc galaxies.
123 - Joel C. Roediger 2010
We use a combination of deep optical and near-infrared light profiles for a morphologically diverse sample of Virgo cluster galaxies to study the radially-resolved stellar populations of cluster galaxies over a wide range of galaxy structure. We find that, in the median, the age gradients of Virgo galaxies are either flat (lenticulars and Sa-Sb spirals) or positive (ellipticals, Sbc+Sc spirals, gas-rich dwarfs, and irregulars), while all galaxy types have a negative median metallicity gradient. Comparison of the galaxy stellar population diagnostics (age, metallicity, and gradients thereof) against structural and environmental parameters also reveals that the ages of gas-rich systems depend mainly on their atomic gas deficiencies. Conversely, the metallicities of Virgo gas-poor galaxies depend on their concentrations, luminosities, and surface brightnesses. The stellar population gradients of all Virgo galaxies exhibit no dependence on either their structure or environment. We interpret these stellar population data for Virgo galaxies in the context of popular formation and evolution scenarios, and suggest that gas-poor giants grew hierarchically (through dissipative starbursts), gas-poor dwarfs have descended from at least two different production channels (e.g., environmental transformation and merging), while spirals formed inside-out, but with star formation in the outskirts of a significant fraction of the population having been quenched due to ram pressure stripping. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا