ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Simple AGN Unification with Chandra-observed 3CRR Sources

68   0   0.0 ( 0 )
 نشر من قبل Joanna Kuraszkiewicz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-frequency radio selection finds radio-bright galaxies regardless of the amount of obscuration by gas and dust. We report chandra observations of a complete 178~MHz-selected, and so orientation unbiased, sample of 44 $0.5<z<1$ 3CRR sources. The sample is comprised of quasars and narrow-line radio galaxies (NLRGs) with similar radio luminosities, and the radio structure serves as both an age and an orientation indicator. Consistent with Unification, intrinsic obscuration (measured by h, X-ray hardness ratio, and X-ray luminosity) generally increases with inclination. However, the sample includes a population not seen in high-$z$ 3CRR sources: NLRGs viewed at intermediate inclination angles with h~$<10^{22}$~cm$^{-2}$. Multiwavelength analysis suggests these objects have lower $L/L_{rm Edd}$ than typical NLRGs at similar orientation. Thus both orientation and $L/L_{rm Edd}$ are important, and a radiation-regulated Unification provides a better explanation of the samples observed properties. In comparison with the 3CRR sample at $1<z<2$, our lower-redshift sample shows a higher fraction of Compton-thin NLRGs (45% vs. 29%) but similar Compton-thick fraction (20%), implying a larger covering factor of Compton-thin material at intermediate viewing angles and so a more puffed-up torus atmosphere. We posit that this is due to a range of $L/L_{rm Edd}$ extending to lower values in this sample. In contrast, at high redshifts the narrower range and high $L/L_{rm Edd}$ values allowed orientation (and so simple Unification) to dominate the samples observed properties.

قيم البحث

اقرأ أيضاً

We present the spatial analysis of five Compton thick (CT) active galactic nuclei (AGNs), including MKN 573, NGC 1386, NGC 3393, NGC 5643, and NGC 7212, for which high resolution Chandra observations are available. For each source, we find hard X-ray emission (>3 keV) extending to ~kpc scales along the ionization cone, and for some sources, in the cross-cone region. This collection represents the first, high-signal sample of CT AGN with extended hard X-ray emission for which we can begin to build a more complete picture of this new population of AGN. We investigate the energy dependence of the extended X-ray emission, including possible dependencies on host galaxy and AGN properties, and find a correlation between the excess emission and obscuration, suggesting a connection between the nuclear obscuring material and the galactic molecular clouds. Furthermore, we find that the soft X-ray emission extends farther than the hard X-rays along the ionization cone, which may be explained by a galactocentric radial dependence on the density of molecular clouds due to the orientation of the ionization cone with respect to the galactic disk. These results are consistent with other CT AGN with observed extended hard X-ray emission (e.g., ESO 428-G014 and the Ma et al. 2020 CT AGN sample), further demonstrating the ubiquity of extended hard X-ray emission in CT AGN.
We present the joint Chandra, XMM-Newton and NuSTAR analysis of two nearby Seyfert galaxies, NGC 3081 and ESO 565-G019. These are the only two having Chandra data in a larger sample of ten low redshift ($z le 0.05$), candidates Compton-thick Active G alactic Nuclei (AGN) selected in the 15-150 keV band with Swift-BAT that were still lacking NuSTAR data. Our spectral analysis, performed using physically-motivated models, provides an estimate of both the line-of-sight (l.o.s.) and average (N$_{H,S}$) column densities of the two torii. NGC 3081 has a Compton-thin l.o.s. column density N$_{H,z}$=[0.58-0.62] $times 10^{24}$cm$^{-2}$, but the N$_{H,S}$, beyond the Compton-thick threshold (N$_{H,S}$=[1.41-1.78] $times 10^{24}$cm$^{-2}$), suggests a patchy scenario for the distribution of the circumnuclear matter. ESO 565-G019 has both Compton-thick l.o.s. and N$_{H,S}$ column densities (N$_{H,z}>$2.31 $times 10^{24}$cm$^{-2}$ and N$_{H,S} >$2.57 $times 10^{24}$cm$^{-2}$, respectively). The use of physically-motivated models, coupled with the broad energy range covered by the data (0.6-70 keV and 0.6-40 keV, for NGC 3081 and ESO 565-G019, respectively) allows us to constrain the covering factor of the obscuring material, which is C$_{TOR}$=[0.63-0.82] for NGC 3081, and C$_{TOR}$=[0.39-0.65] for ESO 565-G019.
The motivation of the unified model is to explain the main properties of the large zoo of active galactic nuclei with a single physical object. The discovery of broad permitted lines in the polarized spectrum of type 2 Seyfert galaxies in the mid 80s led to the idea of an obscuring torus, whose orientation with respect to our line of sight was the reason of the different optical spectra. However, after many years of observations with different techniques, including IR and mm interferometry, the resulting properties of the observed dust structures differ from the torus model that would be needed to explain the type 1 vs type 2 dichotomy. Moreover, in the last years, multi-frequency monitoring of active galactic nuclei has shown an increasing number of transitions from one type to the other one, which cannot be explained in terms of the simple orientation of the dusty structure surrounding the active galactic nucleus (AGN). The interrelations between the AGN and the host galaxy, as also shown in the Magorrian relation, suggest that the evolution of the host galaxy may also have an important role in the observed manifestation of the nuclei. As an example, the observed delay between the maximum star formation activity and the onset of the AGN activity, and the higher occurrence of type 2 nuclei in star forming galaxies, have suggested the possible evolutionary path from, e.g., HII $rightarrow$ AGN2 $rightarrow$ AGN1. In the next years the models of unification need to also consider this observational framework and not only simple orientation effects.
146 - M. Revnivtsev 2011
We study the statistical properties of faint X-ray sources detected in the Chandra Bulge Field. The unprecedented sensitivity of the Chandra observations allows us to probe the population of faint Galactic X-ray sources down to luminosities L(2-10 ke V)~1e30 erg/sec at the Galactic Center distance. We show that the luminosity function of these CBF sources agrees well with the luminosity function of sources in the Solar vicinity (Sazonov et al. 2006). The cumulative luminosity density of sources detected in the CBF in the luminosity range 1e30-1e32 erg/sec per unit stellar mass is L(2-10 keV)/M*=(1.7+/-0.3)e27 erg/sec/Msun. Taking into account sources in the luminosity range 1e32-1e34 erg/sec from Sazonov et al. (2006), the cumulative luminosity density in the broad luminosity range 1e30-1e34 erg/sec becomes L(2-10 keV)/M*=(2.4+/-0.4)e27 erg/sec/Msun. The majority of sources with the faintest luminosities should be active binary stars with hot coronae based on the available luminosity function of X-ray sources in the Solar environment.
We use time-domain optical spectroscopy to distinguish between broad emission lines powered by accreting black holes (BHs) or stellar processes (i.e., supernovae) for 16 galaxies identified as AGN candidates by Reines etal (2013). Our study is primar ily focused on those objects with narrow emission-line ratios dominated by star formation. Based on follow-up spectra taken with the Magellan Echellette Spectrograph (MagE), the Dual Imaging Spectrograph, and the Ohio State Multi-Object Spectrograph, we find that the broad H$alpha$ emission has faded or was ambiguous for all of the star-forming objects (14/16) over baselines ranging from 5 to 14 years. For the two objects in our follow-up sample with narrow-line AGN signatures (RGG 9 and RGG 119), we find persistent broad H$alpha$ emission consistent with an AGN origin. Additionally, we use our MagE observations to measure stellar velocity dispersions for 15 objects in the Reines et al. (2013) sample, all with narrow-line ratios indicating the presence of an AGN. Stellar masses range from $sim5times10^{8}$ to $3times10^{9}$~msun, and we measure $sigma_{ast}$ ranging from $28-71~{rm km~s^{-1}}$. These $sigma_{ast}$ correspond to some of the lowest-mass galaxies with optical signatures of AGN activity. We show that RGG 119, the one object which has both a measured $sigma_{ast}$ and persistent broad H$alpha$ emission, falls near the extrapolation of the $rm M_{BH}-sigma_{star}$ relation to the low-mass end.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا