ترغب بنشر مسار تعليمي؟ اضغط هنا

Compton-Thick AGN in the NuSTAR era VII. A joint NuSTAR, Chandra and XMM-Newton analysis of two nearby, heavily obscured sources

89   0   0.0 ( 0 )
 نشر من قبل Alberto Traina
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the joint Chandra, XMM-Newton and NuSTAR analysis of two nearby Seyfert galaxies, NGC 3081 and ESO 565-G019. These are the only two having Chandra data in a larger sample of ten low redshift ($z le 0.05$), candidates Compton-thick Active Galactic Nuclei (AGN) selected in the 15-150 keV band with Swift-BAT that were still lacking NuSTAR data. Our spectral analysis, performed using physically-motivated models, provides an estimate of both the line-of-sight (l.o.s.) and average (N$_{H,S}$) column densities of the two torii. NGC 3081 has a Compton-thin l.o.s. column density N$_{H,z}$=[0.58-0.62] $times 10^{24}$cm$^{-2}$, but the N$_{H,S}$, beyond the Compton-thick threshold (N$_{H,S}$=[1.41-1.78] $times 10^{24}$cm$^{-2}$), suggests a patchy scenario for the distribution of the circumnuclear matter. ESO 565-G019 has both Compton-thick l.o.s. and N$_{H,S}$ column densities (N$_{H,z}>$2.31 $times 10^{24}$cm$^{-2}$ and N$_{H,S} >$2.57 $times 10^{24}$cm$^{-2}$, respectively). The use of physically-motivated models, coupled with the broad energy range covered by the data (0.6-70 keV and 0.6-40 keV, for NGC 3081 and ESO 565-G019, respectively) allows us to constrain the covering factor of the obscuring material, which is C$_{TOR}$=[0.63-0.82] for NGC 3081, and C$_{TOR}$=[0.39-0.65] for ESO 565-G019.



قيم البحث

اقرأ أيضاً

We present the joint NuSTAR and XMM-Newton spectral analysis in the 0.6-70 keV band of three candidate Compton thick (CT-) AGN selected in the 100-month Swift-BAT catalog. These objects were previously classified as CT-AGNs based on low quality Swift -XRT and Swift-BAT data, and had soft photon indices (Gamma>2.2) that suggested a potential overestimation of the line of sight column density. Thanks to the high-quality NuSTAR and XMM-Newton data we were able to determine that in all three objects the photon index was significantly overestimated, and two out of three sources are reclassified from CT to Compton thin, confirming a previously observed trend, i.e., that a significant fraction of BAT-selected, candidate CT-AGNs with poor soft X-ray data are reclassified as Compton thin when the NuSTAR data are added to the fit. Finally, thanks to both the good XMM-Newton spatial resolution and the high NuSTAR and XMM-Newton spectral quality, we found that the third object in our sample was associated to the wrong counterpart: the correct one, 2MASX J10331570+5252182, has redshift z=0.14036, which makes it one of the very few candidate CT-AGNs in the 100-month BAT catalog detected at z>0.1, and a rare CT quasar.
We present the analysis of a sample of 35 candidate Compton thick (CT-) active galactic nuclei (AGNs) selected in the nearby Universe (average redshift <z>~0.03) with the Swift-BAT 100-month survey. All sources have available NuSTAR data, thus allowi ng us to constrain with unprecedented quality important spectral parameters such as the obscuring torus line-of-sight column density (N_{H, z}), the average torus column density (N_{H, tor}) and the torus covering factor (f_c). We compare the best-fit results obtained with the widely used MyTorus (Murphy et al. 2009) model with those of the recently published borus02 model (Balokovic et al. 2018) used in the same geometrical configuration of MyTorus (i.e., with f_c=0.5). We find a remarkable agreement between the two, although with increasing dispersion in N_{H, z} moving towards higher column densities. We then use borus02 to measure f_c. High-f_c sources have, on average, smaller offset between N_{H, z} and N_{H, tor} than low-f_c ones. Therefore, low f_c values can be linked to a patchy torus scenario, where the AGN is seen through an over-dense region in the torus, while high-f_c objects are more likely to be obscured by a more uniform gas distribution. Finally, we find potential evidence of an inverse trend between f_c and the AGN 2-10 keV luminosity, i.e., sources with higher f_c values have on average lower luminosities.
We report the discovery of a Compton-thick (CT) dust-obscured galaxy (DOG) at $z$ = 0.89, WISE J082501.48+300257.2 (WISE0825+3002), observed by Nuclear Spectroscopic Telescope Array (NuSTAR). X-ray analysis with the XCLUMPY model revealed that hard X -ray luminosity in the rest-frame 2-10 keV band of WISE0825+3002 is $L_{rm X}$ (2-10 keV) = $4.2^{+2.8}_{-1.6} times 10^{44}$ erg s$^{-1}$ while its hydrogen column density is $N_{rm H}$ = $1.0^{+0.8}_{-0.4} times 10^{24}$ cm$^{-2}$, indicating that WISE0825+3002 is a mildly CT active galactic nucleus (AGN). We performed the spectral energy distribution (SED) fitting with CIGALE to derive its stellar mass, star formation rate, and infrared luminosity. The estimated Eddington ratio based on stellar mass and integration of the best-fit SED of AGN component is $lambda_{rm Edd}$ = 0.70, which suggests that WISE0825+3002 harbors an actively growing black hole behind a large amount of gas and dust. We found that the relationship between luminosity ratio of X-ray and 6 $mu$m, and Eddington ratio follows an empirical relation for AGNs reported by Toba et al. (2019a).
We present new Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the core of IC 2497, the galaxy associated with Hannys Voorwerp. The combined fits of the Chandra (0.5-8 keV) and NuSTAR (3-24 keV) X-ray spectra, together with WISE mid-IR photometry, optical longslit spectroscopy and optical narrow-band imaging, suggest that the galaxy hosts a Compton-thick AGN ($N_{rm H} sim 2 times 10^{24}$ cm$^{-2}$, current intrinsic luminosity $L_{rm bol} sim 2-5 times 10^{44}$ erg s$^{-1}$) whose luminosity dropped by a factor of $sim$50 within the last $sim 100$ kyr. This corresponds to a change in Eddington ratio from $rm lambda_{Edd} sim$ 0.35 to $rm lambda_{Edd} sim$ 0.007. We argue that the AGN in IC 2497 should not be classified as a changing-look AGN, but rather we favour the interpretation where the AGN is undergoing a change in accretion state (from radiatively efficient to radiatively inefficient). In this scenario the observed drop in luminosity and Eddington ratio corresponds to the final stage of an AGN accretion phase. Our results are consistent with previous studies in the optical, X-ray and radio although the magnitude of the drop is lower than previously suggested. In addition, we discuss a possible analogy between X-ray binaries and an AGN.
We present the analysis of simultaneous NuSTAR and XMM-Newton data of 8 Compton-thick (CT-) active galactic nuclei (AGN) candidates selected in the Swift-Burst Alert Telescope (BAT) 100 month survey. This work is part of an ongoing effort to find and characterize all CT-AGN in the local ($zleq$0.05) Universe. We used two physically motivated models, MYTorus and borus02, to characterize the sources in the sample, finding 5 of them to be confirmed CT-AGN. These results represent an increase of $sim19$% over the previous NuSTAR-confirmed, BAT-selected CT-AGN at $zleq0.05$, bringing the total number to 32. This corresponds to an observed fraction of $sim 8$% of all AGN within this volume-limited sample, although it increases to $20pm5$% when limiting the sample to $zleq0.01$. Out of a sample of 48 CT-AGN candidates, selected using BAT and soft (0.3$-$10 keV) X-ray data, only 24 are confirmed as CT-AGN with the addition of the NuSTAR data. This highlights the importance of NuSTAR when classifying local obscured AGN. We also note that most of the sources in our full sample of 48 Seyfert 2 galaxies with NuSTAR data have significantly different line-of-sight and average torus column densities, favouring a patchy torus scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا