ترغب بنشر مسار تعليمي؟ اضغط هنا

Block Access Control in Wireless Blockchain Network: Design, Modeling and Analysis

77   0   0.0 ( 0 )
 نشر من قبل Bin Cao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless blockchain network is proposed to enable a decentralized and safe wireless networks for various blockchain applications. To achieve blockchain consensus in wireless network, one of the important steps is to broadcast new block using wireless channel. Under wireless network protocols, the block transmitting will be affected significantly. In this work, we focus on the consensus process in blockchain-based wireless local area network (B-WLAN) by investigating the impact of the media access control (MAC) protocol, CSMA/CA. With the randomness of the backoff counter in CSMA/CA, it is possible for latter blocks to catch up or outpace the earlier one, which complicates blockchain forking problem. In view of this, we propose mining strategies to pause mining for reducing the forking probability, and a discard strategy to remove the forking blocks that already exist in CSMA/CA backoff procedure. Based on the proposed strategies, we design Block Access Control (BAC) approaches to effectively schedule block mining and transmitting for improving the performance of B-WLAN. Then, Markov chain models are presented to conduct performance analysis in B-WLAN. The results show that BAC approaches can help the network to achieve a high transaction throughput while improving block utilization and saving computational power. Meanwhile, the trade-off between transaction throughput and block utilization is demonstrated, which can act as a guidance for practical deployment of blockchain.



قيم البحث

اقرأ أيضاً

In cloud storage systems with a large number of servers, files are typically not stored in single servers. Instead, they are split, replicated (to ensure reliability in case of server malfunction) and stored in different servers. We analyze the mean latency of such a split-and-replicate cloud storage system under general sub-exponential service time. We present a novel scheduling scheme that utilizes the load-balancing policy of the textit{power of $d$ $(geq 2)$} choices. An alternative to split-and-replicate is to use erasure-codes, and recently, it has been observed that they can reduce latency in data access (see cite{longbo_delay} for details). We argue that under high redundancy (integer redundancy factor strictly greater than or equal to 2) regime, the mean latency of a coded system is upper bounded by that of a split-and-replicate system (with same replication factor) and the gap between these two is small. We validate this claim numerically under different service distributions such as exponential, shift plus exponential and the heavy-tailed Weibull distribution and compare the mean latency to that of an unsplit-replicated system. We observe that the coded system outperforms the unsplit-replication system by at least $20%$. Furthermore, we consider the mean latency for an erasure coded system with low redundancy (fractional redundancy factor between 1 and 2), a scenario which is more pragmatic, given the storage constraints (cite{rashmi_thesis}). However under this regime, we restrict ourselves to the special case of exponential service time distribution and use the randomized load balancing policy namely textit{batch-sampling}. We obtain an upper bound on mean delay that depends on the order statistics of the queue lengths, which, we further smooth out via a discrete to continuous approximation.
Reconfigurable intelligent surfaces (RISs) are an emerging technology for future wireless communication. The vast majority of recent research on RIS has focused on system level optimizations. However, developing straightforward and tractable electrom agnetic models that are suitable for RIS aided communication modeling remains an open issue. In this paper, we address this issue and derive communication models by using rigorous scattering parameter network analysis. We also propose new RIS architectures based on group and fully connected reconfigurable impedance networks that can adjust not only the phases but also the magnitudes of the impinging waves, which are more general and more efficient than conventional single connected reconfigurable impedance network that only adjusts the phases of the impinging waves. In addition, the scaling law of the received signal power of an RIS aided system with reconfigurable impedance networks is also derived. Compared with the single connected reconfigurable impedance network, our group and fully connected reconfigurable impedance network can increase the received signal power by up to 62%, or maintain the same received signal power with a number of RIS elements reduced by up to 21%. We also investigate the proposed architecture in deployments with distance-dependent pathloss and Rician fading channel, and show that the proposed group and fully connected reconfigurable impedance networks outperform the single connected case by up to 34% and 48%, respectively.
With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT s ystems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively.
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between sourcedestination pairs by multi hop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint.
199 - Lu Lu , Lizhao You , 2013
This paper proposes and experimentally demonstrates a first wireless local area network (WLAN) system that jointly exploits physical-layer network coding (PNC) and multiuser decoding (MUD) to boost system throughput. We refer to this multiple access mode as Network-Coded Multiple Access (NCMA). Prior studies on PNC mostly focused on relay networks. NCMA is the first realized multiple access scheme that establishes the usefulness of PNC in a non-relay setting. NCMA allows multiple nodes to transmit simultaneously to the access point (AP) to boost throughput. In the non-relay setting, when two nodes A and B transmit to the AP simultaneously, the AP aims to obtain both packet A and packet B rather than their network-coded packet. An interesting question is whether network coding, specifically PNC which extracts packet (A XOR B), can still be useful in such a setting. We provide an affirmative answer to this question with a novel two-layer decoding approach amenable to real-time implementation. Our USRP prototype indicates that NCMA can boost throughput by 100% in the medium-high SNR regime (>=10dB). We believe further throughput enhancement is possible by allowing more than two users to transmit together.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا