ترغب بنشر مسار تعليمي؟ اضغط هنا

Blockchain for IoT Access Control: Recent Trends and Future Research Directions

93   0   0.0 ( 0 )
 نشر من قبل Shantanu Pal
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT systems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively.



قيم البحث

اقرأ أيضاً

Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross-validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, Digital Twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use-cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We highlight the role of Artificial Intelligence (AI) in blockchain-based DTs. Furthermore, we discuss current and future research and deployment challenges of blockchain-supported DTs that require further investigation.
The development of Internet of Things (IoT) technology enables the rapid growth of connected smart devices and mobile applications. However, due to the constrained resources and limited battery capacity, there are bottlenecks when utilizing the smart devices. Mobile edge computing (MEC) offers an attractive paradigm to handle this challenge. In this work, we concentrate on the MEC application for IoT and deal with the energy saving objective via offloading workloads between cloud and edge. In this regard, we firstly identify the energy-related challenges in MEC. Then we present a green-aware framework for MEC to address the energy-related challenges, and provide a generic model formulation for the green MEC. We also discuss some state-of-the-art workloads offloading approaches to achieve green IoT and compare them in comprehensive perspectives. Finally, some future research directions related to energy efficiency in MEC are given.
Device failure detection is one of most essential problems in industrial internet of things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might l ead to disclosure of sensitive business data. Therefore, in this paper, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Further, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client dataset. In addition, to motivate clients to participate in federated learning, a smart contact based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance.
The emerging Internet of Things (IoT) is facing significant scalability and security challenges. On the one hand, IoT devices are weak and need external assistance. Edge computing provides a promising direction addressing the deficiency of centralize d cloud computing in scaling massive number of devices. On the other hand, IoT devices are also relatively vulnerable facing malicious hackers due to resource constraints. The emerging blockchain and smart contracts technologies bring a series of new security features for IoT and edge computing. In this paper, to address the challenges, we design and prototype an edge-IoT framework named EdgeChain based on blockchain and smart contracts. The core idea is to integrate a permissioned blockchain and the internal currency or coin system to link the edge cloud resource pool with each IoT device account and resource usage, and hence behavior of the IoT devices. EdgeChain uses a credit-based resource management system to control how much resource IoT devices can obtain from edge servers, based on pre-defined rules on priority, application types and past behaviors. Smart contracts are used to enforce the rules and policies to regulate the IoT device behavior in a non-deniable and automated manner. All the IoT activities and transactions are recorded into blockchain for secure data logging and auditing. We implement an EdgeChain prototype and conduct extensive experiments to evaluate the ideas. The results show that while gaining the security benefits of blockchain and smart contracts, the cost of integrating them into EdgeChain is within a reasonable and acceptable range.
Constraint Satisfaction Problems (CSPs) play a central role in many applications in Artificial Intelligence and Operations Research. In general, solving CSPs is NP-complete. The structure of CSPs is best described by hypergraphs. Therefore, various f orms of hypergraph decompositions have been proposed in the literature to identify tractable fragments of CSPs. However, also the computation of a concrete hypergraph decomposition is a challenging task in itself. In this paper, we report on recent progress in the study of hypergraph decompositions and we outline several directions for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا