ترغب بنشر مسار تعليمي؟ اضغط هنا

SE-DAE: Style-Enhanced Denoising Auto-Encoder for Unsupervised Text Style Transfer

129   0   0.0 ( 0 )
 نشر من قبل Yang Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Text style transfer aims to change the style of sentences while preserving the semantic meanings. Due to the lack of parallel data, the Denoising Auto-Encoder (DAE) is widely used in this task to model distributions of different sentence styles. However, because of the conflict between the target of the conventional denoising procedure and the target of style transfer task, the vanilla DAE can not produce satisfying enough results. To improve the transferability of the model, most of the existing works combine DAE with various complicated unsupervised networks, which makes the whole system become over-complex. In this work, we design a novel DAE model named Style-Enhanced DAE (SE-DAE), which is specifically designed for the text style transfer task. Compared with previous complicated style-transfer models, our model do not consist of any complicated unsupervised networks, but only relies on the high-quality pseudo-parallel data generated by a novel data refinement mechanism. Moreover, to alleviate the conflict between the targets of the conventional denoising procedure and the style transfer task, we propose another novel style denoising mechanism, which is more compatible with the target of the style transfer task. We validate the effectiveness of our model on two style benchmark datasets. Both automatic evaluation and human evaluation show that our proposed model is highly competitive compared with previous strong the state of the art (SOTA) approaches and greatly outperforms the vanilla DAE.



قيم البحث

اقرأ أيضاً

197 - Fei Xiao , Liang Pang , Yanyan Lan 2021
Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules to the test cases. However, the lacking of parallel corpus hinders the ability of these inductive learning methods on this task. As a result, it is likely to cause severe inconsistent style expressions, like `the salad is rude`. To tackle this problem, we propose a novel transductive learning approach in this paper, based on a retrieval-based context-aware style representation. Specifically, an attentional encoder-decoder with a retriever framework is utilized. It involves top-K relevant sentences in the target style in the transfer process. In this way, we can learn a context-aware style embedding to alleviate the above inconsistency problem. In this paper, both sparse (BM25) and dense retrieval functions (MIPS) are used, and two objective functions are designed to facilitate joint learning. Experimental results show that our method outperforms several strong baselines. The proposed transductive learning approach is general and effective to the task of unsupervised style transfer, and we will apply it to the other two typical methods in the future.
162 - Youzhi Tian , Zhiting Hu , Zhou Yu 2018
Text style transfer aims to modify the style of a sentence while keeping its content unchanged. Recent style transfer systems often fail to faithfully preserve the content after changing the style. This paper proposes a structured content preserving model that leverages linguistic information in the structured fine-grained supervisions to better preserve the style-independent content during style transfer. In particular, we achieve the goal by devising rich model objectives based on both the sentences lexical information and a language model that conditions on content. The resulting model therefore is encouraged to retain the semantic meaning of the target sentences. We perform extensive experiments that compare our model to other existing approaches in the tasks of sentiment and political slant transfer. Our model achieves significant improvement in terms of both content preservation and style transfer in automatic and human evaluation.
We present a deep generative model for unsupervised text style transfer that unifies previously proposed non-generative techniques. Our probabilistic approach models non-parallel data from two domains as a partially observed parallel corpus. By hypot hesizing a parallel latent sequence that generates each observed sequence, our model learns to transform sequences from one domain to another in a completely unsupervised fashion. In contrast with traditional generative sequence models (e.g. the HMM), our model makes few assumptions about the data it generates: it uses a recurrent language model as a prior and an encoder-decoder as a transduction distribution. While computation of marginal data likelihood is intractable in this model class, we show that amortized variational inference admits a practical surrogate. Further, by drawing connections between our variational objective and other recent unsupervised style transfer and machine translation techniques, we show how our probabilistic view can unify some known non-generative objectives such as backtranslation and adversarial loss. Finally, we demonstrate the effectiveness of our method on a wide range of unsupervised style transfer tasks, including sentiment transfer, formality transfer, word decipherment, author imitation, and related language translation. Across all style transfer tasks, our approach yields substantial gains over state-of-the-art non-generative baselines, including the state-of-the-art unsupervised machine translation techniques that our approach generalizes. Further, we conduct experiments on a standard unsupervised machine translation task and find that our unified approach matches the current state-of-the-art.
112 - Fuli Luo , Peng Li , Jie Zhou 2019
Unsupervised text style transfer aims to transfer the underlying style of text but keep its main content unchanged without parallel data. Most existing methods typically follow two steps: first separating the content from the original style, and then fusing the content with the desired style. However, the separation in the first step is challenging because the content and style interact in subtle ways in natural language. Therefore, in this paper, we propose a dual reinforcement learning framework to directly transfer the style of the text via a one-step mapping model, without any separation of content and style. Specifically, we consider the learning of the source-to-target and target-to-source mappings as a dual task, and two rewards are designed based on such a dual structure to reflect the style accuracy and content preservation, respectively. In this way, the two one-step mapping models can be trained via reinforcement learning, without any use of parallel data. Automatic evaluations show that our model outperforms the state-of-the-art systems by a large margin, especially with more than 8 BLEU points improvement averaged on two benchmark datasets. Human evaluations also validate the effectiveness of our model in terms of style accuracy, content preservation and fluency. Our code and data, including outputs of all baselines and our model are available at https://github.com/luofuli/DualLanST.
Binary classifiers are often employed as discriminators in GAN-based unsupervised style transfer systems to ensure that transferred sentences are similar to sentences in the target domain. One difficulty with this approach is that the error signal pr ovided by the discriminator can be unstable and is sometimes insufficient to train the generator to produce fluent language. In this paper, we propose a new technique that uses a target domain language model as the discriminator, providing richer and more stable token-level feedback during the learning process. We train the generator to minimize the negative log likelihood (NLL) of generated sentences, evaluated by the language model. By using a continuous approximation of discrete sampling under the generator, our model can be trained using back-propagation in an end- to-end fashion. Moreover, our empirical results show that when using a language model as a structured discriminator, it is possible to forgo adversarial steps during training, making the process more stable. We compare our model with previous work using convolutional neural networks (CNNs) as discriminators and show that our approach leads to improved performance on three tasks: word substitution decipherment, sentiment modification, and related language translation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا