ﻻ يوجد ملخص باللغة العربية
Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules to the test cases. However, the lacking of parallel corpus hinders the ability of these inductive learning methods on this task. As a result, it is likely to cause severe inconsistent style expressions, like `the salad is rude`. To tackle this problem, we propose a novel transductive learning approach in this paper, based on a retrieval-based context-aware style representation. Specifically, an attentional encoder-decoder with a retriever framework is utilized. It involves top-K relevant sentences in the target style in the transfer process. In this way, we can learn a context-aware style embedding to alleviate the above inconsistency problem. In this paper, both sparse (BM25) and dense retrieval functions (MIPS) are used, and two objective functions are designed to facilitate joint learning. Experimental results show that our method outperforms several strong baselines. The proposed transductive learning approach is general and effective to the task of unsupervised style transfer, and we will apply it to the other two typical methods in the future.
Unsupervised text style transfer aims to transfer the underlying style of text but keep its main content unchanged without parallel data. Most existing methods typically follow two steps: first separating the content from the original style, and then
Text style transfer aims to modify the style of a sentence while keeping its content unchanged. Recent style transfer systems often fail to faithfully preserve the content after changing the style. This paper proposes a structured content preserving
Text style transfer aims to change the style of sentences while preserving the semantic meanings. Due to the lack of parallel data, the Denoising Auto-Encoder (DAE) is widely used in this task to model distributions of different sentence styles. Howe
We present a deep generative model for unsupervised text style transfer that unifies previously proposed non-generative techniques. Our probabilistic approach models non-parallel data from two domains as a partially observed parallel corpus. By hypot
Text style transfer (TST) is an important task in natural language generation (NLG), which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural la