ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Preconditioners for Interior Point Methods via a new Schur Complementation Strategy

68   0   0.0 ( 0 )
 نشر من قبل Samah Karim
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose new preconditioned iterative solvers for linear systems arising in primal-dual interior point methods for convex quadratic programming problems. These preconditioned conjugate gradient methods operate on an implicit Schur complement of the KKT system at each iteration. In contrast to standard approaches, the Schur complement we consider enables the reuse of the factorization of the Hessian of the equality-constraint Lagrangian across all interior point iterations. Further, the resulting reduced system admits preconditioners that directly alleviate the ill-conditioning associated with the strict complementarity condition in interior point methods. The two preconditioners we propose also provably reduce the number of unique eigenvalues for the coefficient matrix (CG iteration count). One is efficient when the number of equality constraints is small, while the other is efficient when the number of remaining degrees of freedom is small. Numerical experiments with synthetic problems and problems from the Maros-Meszaros QP collection show that our preconditioned inexact interior point solvers are effective at improving conditioning and reducing cost. Across all test problems for which the direct method is not fastest, our preconditioned methods achieve a reduction in cost by a geometric mean of 1.432 relative to the best alternative preconditioned method for each problem.



قيم البحث

اقرأ أيضاً

In this paper, two types of Schur complement based preconditioners are studied for twofold and block tridiagonal saddle point problems. One is based on the nested (or recursive) Schur complement, the other is based on an additive type Schur complemen t after permuting the original saddle point systems. We discuss different preconditioners incorporating the exact Schur complements. It is shown that some of them will lead to positive stable preconditioned systems. Our theoretical analysis is instructive for devising various exact and inexact preconditioners, as well as iterative solvers for many twofold and block tridiagonal saddle point problems.
In this paper we study the linear systems arising from discretized poroelasticity problems. We formulate one block preconditioner for the two-filed Biot model and several preconditioners for the classical three-filed Biot model under the unified rela tionship framework between well-posedness and preconditioners. By the unified theory, we show all the considered preconditioners are uniformly optimal with respect to material and discretization parameters. Numerical tests demonstrate the robustness of these preconditioners.
Using the framework of operator or Cald{e}ron preconditioning, uniform preconditioners are constructed for elliptic operators of order $2s in [0,2]$ discretized with continuous finite (or boundary) elements. The cost of the preconditioner is the cost of the application an elliptic opposite order operator discretized with discontinuous or continuous finite elements on the same mesh, plus minor cost of linear complexity. Herewith the construction of a so-called dual mesh is avoided.
Stochastic Galerkin finite element method (SGFEM) provides an efficient alternative to traditional sampling methods for the numerical solution of linear elliptic partial differential equations with parametric or random inputs. However, computing stoc hastic Galerkin approximations for a given problem requires the solution of large coupled systems of linear equations. Therefore, an effective and bespoke iterative solver is a key ingredient of any SGFEM implementation. In this paper, we analyze a class of truncation preconditioners for SGFEM. Extending the idea of the mean-based preconditioner, these preconditioners capture additional significant components of the stochastic Galerkin matrix. Focusing on the parametric diffusion equation as a model problem and assuming affine-parametric representation of the diffusion coefficient, we perform spectral analysis of the preconditioned matrices and establish optimality of truncation preconditioners with respect to SGFEM discretization parameters. Furthermore, we report the results of numerical experiments for model diffusion problems with affine and non-affine parametric representations of the coefficient. In particular, we look at the efficiency of the solver (in terms of iteration counts for solving the underlying linear systems) and compare truncation preconditioners with other existing preconditioners for stochastic Galerkin matrices, such as the mean-based and the Kronecker product ones.
In this paper, we generalize the compact subcell weighted essentially non oscillatory (CSWENO) limiting strategy for Runge-Kutta discontinuous Galerkin method developed recently by us in 2021 for structured meshes to unstructured triangular meshes. T he main idea of the limiting strategy is to divide the immediate neighbors of a given cell into the required stencil and to use a WENO reconstruction for limiting. This strategy can be applied for any type of WENO reconstruction. We have used the WENO reconstruction proposed by Zhu and Shu in 2019 and provided accuracy tests and results for two-dimensional Burgers equation and two dimensional Euler equations to illustrate the performance of this limiting strategy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا