ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusion-limited annihilating systems and the increasing convex order

70   0   0.0 ( 0 )
 نشر من قبل Matthew Junge
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider diffusion-limited annihilating systems with mobile $A$-particles and stationary $B$-particles placed throughout a graph. Mutual annihilation occurs whenever an $A$-particle meets a $B$-particle. Such systems, when ran in discrete time, are also referred to as parking processes. We show for a broad family of graphs and random walk kernels that augmenting either the size or variability of the initial placements of particles increases the total occupation time by $A$-particles of a given subset of the graph. A corollary is that the same phenomenon occurs with the total lifespan of all particles in internal diffusion-limited aggregation.

قيم البحث

اقرأ أيضاً

Place an $A$-particle at each site of a graph independently with probability $p$ and otherwise place a $B$-particle. $A$- and $B$-particles perform independent continuous time random walks at rates $lambda_A$ and $lambda_B$, respectively, and annihil ate upon colliding with a particle of opposite type. Bramson and Lebowitz studied the setting $lambda_A = lambda_B$ in the early 1990s. Despite recent progress, many basic questions remain unanswered for when $lambda_A eq lambda_B$. For the critical case $p=1/2$ on low-dimensional integer lattices, we give a lower bound on the expected number of particles at the origin that matches physicists predictions. For the process with $lambda_B=0$ on the integers and the bidirected regular tree, we give sharp upper and lower bounds for the expected total occupation time of the root at and approaching criticality.
We study an infinite system of moving particles, where each particle is of type A or B. Particles perform independent random walks at rates D_A>0 and D_B>0, and the interaction is given by mutual annihilation A+B->0. The initial condition is i.i.d. w ith finite first moment. We show that this system is site-recurrent, that is, each site is visited infinitely many times. We also generalize a lower bound on the density decay of Bramson and Lebowitz by considering a construction that handles different jump rates.
Red and blue particles are placed in equal proportion through-out either the complete or star graph and iteratively sampled to take simple random walk steps. Mutual annihilation occurs when particles with different colors meet. We compare the time it takes to extinguish every particle to the analogous time in the (simple to analyze) one-type setting. Additionally, we study the effect of asymmetric particle speeds.
We consider a processor sharing queue where the number of jobs served at any time is limited to $K$, with the excess jobs waiting in a buffer. We use random counting measures on the positive axis to model this system. The limit of this measure-valued process is obtained under diffusion scaling and heavy traffic conditions. As a consequence, the limit of the system size process is proved to be a piece-wise reflected Brownian motion.
A class of interacting particle systems on $mathbb{Z}$, involving instantaneously annihilating or coalescing nearest neighbour random walks, are shown to be Pfaffan point processes for all deterministic initial conditions. As diffusion limits, explic it Pfaffan kernels are derived for a variety of coalescing and annihilating Brownian systems. For Brownian motions on $mathbb{R}$, depending on the initial conditions, the corresponding kernels are closely related to the bulk and edge scaling limits of the Pfaffan point process for real eigenvalues for the real Ginibre ensemble of random matrices. For Brownian motions on $mathbb{R}_{+}$ with absorbing or reflected boundary conditions at zero new interesting Pfaffan kernels appear. We illustrate the utility of the Pfaffan structure by determining the extreme statistics of the rightmost particle for the purely annihilating Brownian motions, and also computing the probability of overcrowded regions for all models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا