ﻻ يوجد ملخص باللغة العربية
Red and blue particles are placed in equal proportion through-out either the complete or star graph and iteratively sampled to take simple random walk steps. Mutual annihilation occurs when particles with different colors meet. We compare the time it takes to extinguish every particle to the analogous time in the (simple to analyze) one-type setting. Additionally, we study the effect of asymmetric particle speeds.
We consider a model of language development, known as the naming game, in which agents invent, share and then select descriptive words for a single object, in such a way as to promote local consensus. When formulated on a finite and connected graph,
We consider diffusion-limited annihilating systems with mobile $A$-particles and stationary $B$-particles placed throughout a graph. Mutual annihilation occurs whenever an $A$-particle meets a $B$-particle. Such systems, when ran in discrete time, ar
We study a model of competition between two types evolving as branching random walks on $mathbb{Z}^d$. The two types are represented by red and blue balls respectively, with the rule that balls of different colour annihilate upon contact. We consider
We study an infinite system of moving particles, where each particle is of type A or B. Particles perform independent random walks at rates D_A>0 and D_B>0, and the interaction is given by mutual annihilation A+B->0. The initial condition is i.i.d. w
Place an $A$-particle at each site of a graph independently with probability $p$ and otherwise place a $B$-particle. $A$- and $B$-particles perform independent continuous time random walks at rates $lambda_A$ and $lambda_B$, respectively, and annihil