ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting Explanations for Model Inversion Attacks

290   0   0.0 ( 0 )
 نشر من قبل Brian Lim
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The successful deployment of artificial intelligence (AI) in many domains from healthcare to hiring requires their responsible use, particularly in model explanations and privacy. Explainable artificial intelligence (XAI) provides more information to help users to understand model decisions, yet this additional knowledge exposes additional risks for privacy attacks. Hence, providing explanation harms privacy. We study this risk for image-based model inversion attacks and identified several attack architectures with increasing performance to reconstruct private image data from model explanations. We have developed several multi-modal transposed CNN architectures that achieve significantly higher inversion performance than using the target model prediction only. These XAI-aware inversion models were designed to exploit the spatial knowledge in image explanations. To understand which explanations have higher privacy risk, we analyzed how various explanation types and factors influence inversion performance. In spite of some models not providing explanations, we further demonstrate increased inversion performance even for non-explainable target models by exploiting explanations of surrogate models through attention transfer. This method first inverts an explanation from the target prediction, then reconstructs the target image. These threats highlight the urgent and significant privacy risks of explanations and calls attention for new privacy preservation techniques that balance the dual-requirement for AI explainability and privacy.



قيم البحث

اقرأ أيضاً

Recurrent Neural Networks (RNNs) are often used for sequential modeling of adverse outcomes in electronic health records (EHRs) due to their ability to encode past clinical states. These deep, recurrent architectures have displayed increased performa nce compared to other modeling approaches in a number of tasks, fueling the interest in deploying deep models in clinical settings. One of the key elements in ensuring safe model deployment and building user trust is model explainability. Testing with Concept Activation Vectors (TCAV) has recently been introduced as a way of providing human-understandable explanations by comparing high-level concepts to the networks gradients. While the technique has shown promising results in real-world imaging applications, it has not been applied to structured temporal inputs. To enable an application of TCAV to sequential predictions in the EHR, we propose an extension of the method to time series data. We evaluate the proposed approach on an open EHR benchmark from the intensive care unit, as well as synthetic data where we are able to better isolate individual effects.
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters. Such attacks have triggered increasing concerns about privacy, especially given a growing number of online model repositories. However, existing MI attacks against deep neural networks (DNNs) have large room for performance improvement. We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data. In particular, we train the discriminator to differentiate not only the real and fake samples but the soft-labels provided by the target model. Moreover, unlike previous work that directly searches for a single data point to represent a target class, we propose to model a private data distribution for each target class. Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%, and generalize better to a variety of datasets and models. Our code is available at https://github.com/SCccc21/Knowledge-Enriched-DMI.
We investigate whether post-hoc model explanations are effective for diagnosing model errors--model debugging. In response to the challenge of explaining a models prediction, a vast array of explanation methods have been proposed. Despite increasing use, it is unclear if they are effective. To start, we categorize textit{bugs}, based on their source, into:~textit{data, model, and test-time} contamination bugs. For several explanation methods, we assess their ability to: detect spurious correlation artifacts (data contamination), diagnose mislabeled training examples (data contamination), differentiate between a (partially) re-initialized model and a trained one (model contamination), and detect out-of-distribution inputs (test-time contamination). We find that the methods tested are able to diagnose a spurious background bug, but not conclusively identify mislabeled training examples. In addition, a class of methods, that modify the back-propagation algorithm are invariant to the higher layer parameters of a deep network; hence, ineffective for diagnosing model contamination. We complement our analysis with a human subject study, and find that subjects fail to identify defective models using attributions, but instead rely, primarily, on model predictions. Taken together, our results provide guidance for practitioners and researchers turning to explanations as tools for model debugging.
Vision systems that deploy Deep Neural Networks (DNNs) are known to be vulnerable to adversarial examples. Recent research has shown that checking the intrinsic consistencies in the input data is a promising way to detect adversarial attacks (e.g., b y checking the object co-occurrence relationships in complex scenes). However, existing approaches are tied to specific models and do not offer generalizability. Motivated by the observation that language descriptions of natural scene images have already captured the object co-occurrence relationships that can be learned by a language model, we develop a novel approach to perform context consistency checks using such language models. The distinguishing aspect of our approach is that it is independent of the deployed object detector and yet offers very high accuracy in terms of detecting adversarial examples in practical scenes with multiple objects.
Modern processors use branch prediction and speculative execution to maximize performance. For example, if the destination of a branch depends on a memory value that is in the process of being read, CPUs will try guess the destination and attempt to execute ahead. When the memory value finally arrives, the CPU either discards or commits the speculative computation. Speculative logic is unfaithful in how it executes, can access to the victims memory and registers, and can perform operations with measurable side effects. Spectre attacks involve inducing a victim to speculatively perform operations that would not occur during correct program execution and which leak the victims confidential information via a side channel to the adversary. This paper describes practical attacks that combine methodology from side channel attacks, fault attacks, and return-oriented programming that can read arbitrary memory from the victims process. More broadly, the paper shows that speculative execution implementations violate the security assumptions underpinning numerous software security mechanisms, including operating system process separation, static analysis, containerization, just-in-time (JIT) compilation, and countermeasures to cache timing/side-channel attacks. These attacks represent a serious threat to actual systems, since vulnerable speculative execution capabilities are found in microprocessors from Intel, AMD, and ARM that are used in billions of devices. While makeshift processor-specific countermeasures are possible in some cases, sound solutions will require fixes to processor designs as well as updates to instruction set architectures (ISAs) to give hardware architects and software developers a common understanding as to what computation state CPU implementations are (and are not) permitted to leak.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا