ترغب بنشر مسار تعليمي؟ اضغط هنا

FedDPGAN: Federated Differentially Private Generative Adversarial Networks Framework for the Detection of COVID-19 Pneumonia

229   0   0.0 ( 0 )
 نشر من قبل Bochen Shen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing deep learning technologies generally learn the features of chest X-ray data generated by Generative Adversarial Networks (GAN) to diagnose COVID-19 pneumonia. However, the above methods have a critical challenge: data privacy. GAN will leak the semantic information of the training data which can be used to reconstruct the training samples by attackers, thereby this method will leak the privacy of the patient. Furthermore, for this reason that is the limitation of the training data sample, different hospitals jointly train the model through data sharing, which will also cause the privacy leakage. To solve this problem, we adopt the Federated Learning (FL) frame-work which is a new technique being used to protect the data privacy. Under the FL framework and Differentially Private thinking, we propose a FederatedDifferentially Private Generative Adversarial Network (FedDPGAN) to detectCOVID-19 pneumonia for sustainable smart cities. Specifically, we use DP-GAN to privately generate diverse patient data in which differential privacy technology is introduced to make sure the privacy protection of the semantic information of training dataset. Furthermore, we leverage FL to allow hospitals to collaboratively train COVID-19 models without sharing the original data. Under Independent and Identically Distributed (IID) and non-IID settings, The evaluation of the proposed model is on three types of chest X-ray (CXR) images dataset (COVID-19, normal, and normal pneumonia). A large number of the truthful reports make the verification of our model can effectively diagnose COVID-19 without compromising privacy.



قيم البحث

اقرأ أيضاً

COVID-19 spread across the globe at an immense rate has left healthcare systems incapacitated to diagnose and test patients at the needed rate. Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-r ays. Automation of COVID-19 testing using medical images can speed up the testing process of patients where health care systems lack sufficient numbers of the reverse-transcription polymerase chain reaction (RT-PCR) tests. Supervised deep learning models such as convolutional neural networks (CNN) need enough labeled data for all classes to correctly learn the task of detection. Gathering labeled data is a cumbersome task and requires time and resources which could further strain health care systems and radiologists at the early stages of a pandemic such as COVID-19. In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) from known and labelled classes (Normal and Viral Pneumonia) without the need for labels and training data from the unknown class of images (COVID-19). We used the largest publicly available COVID-19 chest X-ray dataset, COVIDx, which is comprised of Normal, Pneumonia, and COVID-19 images from multiple public databases. In this work, we use transfer learning to segment the lungs in the COVIDx dataset. Next, we show why segmentation of the region of interest (lungs) is vital to correctly learn the task of classification, specifically in datasets that contain images from different resources as it is the case for the COVIDx dataset. Finally, we show improved results in detection of COVID-19 cases using our generative model (RANDGAN) compared to conventional generative adversarial networks (GANs) for anomaly detection in medical images, improving the area under the ROC curve from 0.71 to 0.77.
Quantitative lung measures derived from computed tomography (CT) have been demonstrated to improve prognostication in coronavirus disease (COVID-19) patients, but are not part of the clinical routine since required manual segmentation of lung lesions is prohibitively time-consuming. We propose a new fully automated deep learning framework for rapid quantification and differentiation between lung lesions in COVID-19 pneumonia from both contrast and non-contrast CT images using convolutional Long Short-Term Memory (ConvLSTM) networks. Utilizing the expert annotations, model training was performed 5 times with separate hold-out sets using 5-fold cross-validation to segment ground-glass opacity and high opacity (including consolidation and pleural effusion). The performance of the method was evaluated on CT data sets from 197 patients with positive reverse transcription polymerase chain reaction test result for SARS-CoV-2. Strong agreement between expert manual and automatic segmentation was obtained for lung lesions with a Dice score coefficient of 0.876 $pm$ 0.005; excellent correlations of 0.978 and 0.981 for ground-glass opacity and high opacity volumes. In the external validation set of 67 patients, there was dice score coefficient of 0.767 $pm$ 0.009 as well as excellent correlations of 0.989 and 0.996 for ground-glass opacity and high opacity volumes. Computations for a CT scan comprising 120 slices were performed under 2 seconds on a personal computer equipped with NVIDIA Titan RTX graphics processing unit. Therefore, our deep learning-based method allows rapid fully-automated quantitative measurement of pneumonia burden from CT and may generate results with an accuracy similar to the expert readers.
We introduce a comprehensive screening platform for the COVID-19 (a.k.a., SARS-CoV-2) pneumonia. The proposed AI-based system works on chest x-ray (CXR) images to predict whether a patient is infected with the COVID-19 disease. Although the recent in ternational joint effort on making the availability of all sorts of open data, the public collection of CXR images is still relatively small for reliably training a deep neural network (DNN) to carry out COVID-19 prediction. To better address such inefficiency, we design a cascaded learning strategy to improve both the sensitivity and the specificity of the resulting DNN classification model. Our approach leverages a large CXR image dataset of non-COVID-19 pneumonia to generalize the original well-trained classification model via a cascaded learning scheme. The resulting screening system is shown to achieve good classification performance on the expanded dataset, including those newly added COVID-19 CXR images.
AI plays an important role in COVID-19 identification. Computer vision and deep learning techniques can assist in determining COVID-19 infection with Chest X-ray Images. However, for the protection and respect of the privacy of patients, the hospital s specific medical-related data did not allow leakage and sharing without permission. Collecting such training data was a major challenge. To a certain extent, this has caused a lack of sufficient data samples when performing deep learning approaches to detect COVID-19. Federated Learning is an available way to address this issue. It can effectively address the issue of data silos and get a shared model without obtaining local data. In the work, we propose the use of federated learning for COVID-19 data training and deploy experiments to verify the effectiveness. And we also compare performances of four popular models (MobileNet, ResNet18, MoblieNet, and COVID-Net) with the federated learning framework and without the framework. This work aims to inspire more researches on federated learning about COVID-19.
130 - Zhanwei Xu , Yukun Cao , Cheng Jin 2020
Segmentation of infected areas in chest CT volumes is of great significance for further diagnosis and treatment of COVID-19 patients. Due to the complex shapes and varied appearances of lesions, a large number of voxel-level labeled samples are gener ally required to train a lesion segmentation network, which is a main bottleneck for developing deep learning based medical image segmentation algorithms. In this paper, we propose a weakly-supervised lesion segmentation framework by embedding the Generative Adversarial training process into the Segmentation Network, which is called GASNet. GASNet is optimized to segment the lesion areas of a COVID-19 CT by the segmenter, and to replace the abnormal appearance with a generated normal appearance by the generator, so that the restored CT volumes are indistinguishable from healthy CT volumes by the discriminator. GASNet is supervised by chest CT volumes of many healthy and COVID-19 subjects without voxel-level annotations. Experiments on three public databases show that when using as few as one voxel-level labeled sample, the performance of GASNet is comparable to fully-supervised segmentation algorithms trained on dozens of voxel-level labeled samples.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا