ﻻ يوجد ملخص باللغة العربية
Recently, 3D deep learning models have been shown to be susceptible to adversarial attacks like their 2D counterparts. Most of the state-of-the-art (SOTA) 3D adversarial attacks perform perturbation to 3D point clouds. To reproduce these attacks in pseudo physical scenario, a generated adversarial 3D point cloud need to be reconstructed to mesh, which leads to a significant drop in its adversarial effect. In this paper, we propose a strong 3D adversarial attack named Mesh Attack to address this problem by directly performing perturbation on mesh of a 3D object. Specifically, in each iteration of our method, the mesh is first sampled to point cloud by a differentiable sample module. Then a point cloud classifier is used to back-propagate a combined loss to update the mesh vertices. The combined loss includes an adversarial loss to mislead the point cloud classifier and three mesh losses to regularize the mesh to be smooth. Extensive experiments demonstrate that the proposed scheme outperforms SOTA 3D attacks by a significant margin in the pseudo physical scenario. We also achieved SOTA performance under various defenses. Moreover, to the best of our knowledge, our Mesh Attack is the first attempt of adversarial attack on mesh classifier. Our code is available at: {footnotesize{url{https://github.com/cuge1995/Mesh-Attack}}}.
Deep neural networks are found to be prone to adversarial examples which could deliberately fool the model to make mistakes. Recently, a few of works expand this task from 2D image to 3D point cloud by using global point cloud optimization. However,
In this paper, we examine the long-neglected yet important effects of point sampling patterns in point cloud GANs. Through extensive experiments, we show that sampling-insensitive discriminators (e.g.PointNet-Max) produce shape point clouds with poin
Generating adversarial examples is an intriguing problem and an important way of understanding the working mechanism of deep neural networks. Most existing approaches generated perturbations in the image space, i.e., each pixel can be modified indepe
3D deep learning has been increasingly more popular for a variety of tasks including many safety-critical applications. However, recently several works raise the security issues of 3D deep models. Although most of them consider adversarial attacks, w
Point cloud is an important 3D data representation widely used in many essential applications. Leveraging deep neural networks, recent works have shown great success in processing 3D point clouds. However, those deep neural networks are vulnerable to