ﻻ يوجد ملخص باللغة العربية
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism. However, most state-of-the-art long-term trackers (e.g., Pseudo and re-detecting based ones) do not take all three key properties into account and therefore may either be time-consuming or drift to distractors. To address the issues, we propose a two-task tracking frame work (named DMTrack), which utilizes two core components (i.e., one-shot detection and re-identification (re-id) association) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy. To achieve precise and fast global detection, we construct a lightweight one-shot detector using a novel dynamic convolutions generation method, which provides a unified and more flexible way for fusing target information into the search field. To distinguish the target from distractors, we resort to the philosophy of MOT to reason distractors explicitly by maintaining all potential similarities tracklets. Benefited from the strength of high recall detection and explicit object association, our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT2019LT benchmarks and runs in real-time (3x faster than comparisons).
Multi-Object Tracking (MOT) is a popular topic in computer vision. However, identity issue, i.e., an object is wrongly associated with another object of a different identity, still remains to be a challenging problem. To address it, switchers, i.e.,
Multiple object tracking (MOT) is a crucial task in computer vision society. However, most tracking-by-detection MOT methods, with available detected bounding boxes, cannot effectively handle static, slow-moving and fast-moving camera scenarios simul
Visual tracking can be easily disturbed by similar surrounding objects. Such objects as hard distractors, even though being the minority among negative samples, increase the risk of target drift and model corruption, which deserve additional attentio
We propose a fully convolutional multi-person pose estimation framework using dynamic instance-aware convolutions, termed FCPose. Different from existing methods, which often require ROI (Region of Interest) operations and/or grouping post-processing
Many RGB-T trackers attempt to attain robust feature representation by utilizing an adaptive weighting scheme (or attention mechanism). Different from these works, we propose a new dynamic modality-aware filter generation module (named MFGNet) to boo