ﻻ يوجد ملخص باللغة العربية
We propose a fully convolutional multi-person pose estimation framework using dynamic instance-aware convolutions, termed FCPose. Different from existing methods, which often require ROI (Region of Interest) operations and/or grouping post-processing, FCPose eliminates the ROIs and grouping post-processing with dynamic instance-aware keypoint estimation heads. The dynamic keypoint heads are conditioned on each instance (person), and can encode the instance concept in the dynamically-generated weights of their filters. Moreover, with the strong representation capacity of dynamic convolutions, the keypoint heads in FCPose are designed to be very compact, resulting in fast inference and making FCPose have almost constant inference time regardless of the number of persons in the image. For example, on the COCO dataset, a real-time version of FCPose using the DLA-34 backbone infers about 4.5x faster than Mask R-CNN (ResNet-101) (41.67 FPS vs. 9.26FPS) while achieving improved performance. FCPose also offers better speed/accuracy trade-off than other state-of-the-art methods. Our experiment results show that FCPose is a simple yet effective multi-person pose estimation framework. Code is available at: https://git.io/AdelaiDet
Multi-person pose estimation is an attractive and challenging task. Existing methods are mostly based on two-stage frameworks, which include top-down and bottom-up methods. Two-stage methods either suffer from high computational redundancy for additi
Despite of the recent success of neural networks for human pose estimation, current approaches are limited to pose estimation of a single person and cannot handle humans in groups or crowds. In this work, we propose a method that estimates the poses
Multi-person pose estimation in the wild is challenging. Although state-of-the-art human detectors have demonstrated good performance, small errors in localization and recognition are inevitable. These errors can cause failures for a single-person po
Current methods of multi-person pose estimation typically treat the localization and the association of body joints separately. It is convenient but inefficient, leading to additional computation and a waste of time. This paper, however, presents a n
We study the problem of multi-person pose estimation in natural images. A pose estimate describes the spatial position and identity (head, foot, knee, etc.) of every non-occluded body part of a person. Pose estimation is difficult due to issues such