ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Star-Formation History Measured at 1.4 GHz

93   0   0.0 ( 0 )
 نشر من قبل Allison Matthews
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We matched the 1.4 GHz local luminosity functions of star-forming galaxies (SFGs) and active galactic nuclei to the 1.4 GHz differential source counts from $0.25 mumathrm{Jy}$ to 25 Jy using combinations of luminosity and density evolution. We present the most robust and complete local far-infrared (FIR)/radio luminosity correlation to date in a volume-limited sample of $approx 4.3 times 10^3$ nearby SFGs, finding that it is very tight but distinctly sub-linear: $L_mathrm{FIR} propto L_mathrm{1.4,GHz}^{0.85}$. If the local FIR/radio correlation does not evolve, the evolving 1.4 GHz luminosity function of SFGs yields the evolving star-formation rate density (SFRD) $psi (M_odot mathrm{year}^{-1} mathrm{Mpc}^{-3}$) as a function of time since the big bang. The SFRD measured at 1.4 GHz grows rapidly at early times, peaks at cosmic noon when $t approx 3 mathrm{Gyr}$ and $z approx 2$, and subsequently decays with an $e$-folding time scale $tau = 3.2 mathrm{Gyr}$. This evolution is similar to, but somewhat stronger than, SFRD evolution estimated from UV and FIR data.



قيم البحث

اقرأ أيضاً

We use high-resolution cosmological zoom-in simulations from the FIRE project to make predictions for the covering fractions of neutral hydrogen around galaxies at z=2-4. These simulations resolve the interstellar medium of galaxies and explicitly im plement a comprehensive set of stellar feedback mechanisms. Our simulation sample consists of 16 main halos covering the mass range M_h~10^9-6x10^12 Msun at z=2, including 12 halos in the mass range M_h~10^11-10^12 Msun corresponding to Lyman break galaxies (LBGs). We process our simulations with a ray tracing method to compute the ionization state of the gas. Galactic winds increase the HI covering fractions in galaxy halos by direct ejection of cool gas from galaxies and through interactions with gas inflowing from the intergalactic medium. Our simulations predict HI covering fractions for Lyman limit systems (LLSs) consistent with measurements around z~2-2.5 LBGs; these covering fractions are a factor ~2 higher than our previous calculations without galactic winds. The fractions of HI absorbers arising in inflows and in outflows are on average ~50% but exhibit significant time variability, ranging from ~10% to ~90%. For our most massive halos, we find a factor ~3 deficit in the LLS covering fraction relative to what is measured around quasars at z~2, suggesting that the presence of a quasar may affect the properties of halo gas on ~100 kpc scales. The predicted covering fractions, which decrease with time, peak at M_h~10^11-10^12 Msun, near the peak of the star formation efficiency in dark matter halos. In our simulations, star formation and galactic outflows are highly time dependent; HI covering fractions are also time variable but less so because they represent averages over large areas.
Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshift; the AKARI all sky s urvey in 6 bands (9-160 $mu$m), and the AKARI NEP survey in 9 bands (2-24$mu$m). The AKARI performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160 $mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, we measure the total infrared luminosity ($L_{TIR}$) of individual galaxies, and thus, the total infrared luminosity density of the local Universe much more precisely than previous work. In the AKARI NEP wide field, AKARI has obtained deep images in the mid-infrared (IR), covering 5.4 deg$^2$. However, our previous work was limited to the central area of 0.25 deg$^2$ due to the lack of deep optical coverage. To rectify the situation, we used the newly advent Subaru telescopes Hyper Suprime-Cam to obtain deep optical images over the entire 5.4 deg$^2$ of the AKARI NEP wide field. With this deep and wide optical data, we, for the first time, can use the entire AKARI NEP wide data to construct restframe 8$mu$m, 12$mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2. A continuous 9-band filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$mu$m) by the AKARI satellite allowed us to estimate restframe 8$mu$m and 12$mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z=0 to z=2.2, all probed by the AKARI satellite.
Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to p robe this both at low and high redshifts. The AKARI performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160$mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can much more precisely measure the total infrared luminosity ($L_{TIR}$) of individual galaxies, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe 8$mu$m, 12$mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2 using 4128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$mu$m) by the AKARI satellite allows us to estimate restframe 8$mu$m and 12$mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from $z$=0 to $z$=2.2, all probed by the AKARI satellite.
We make use of the deep Karl G. Jansky Very Large Array (VLA) COSMOS radio observations at 3 GHz to infer radio luminosity functions of star-forming galaxies up to redshifts of z~5 based on approximately 6000 detections with reliable optical counterp arts. This is currently the largest radio-selected sample available out to z~5 across an area of 2 square degrees with a sensitivity of rms=2.3 ujy/beam. By fixing the faint and bright end shape of the radio luminosity function to the local values, we find a strong redshift trend that can be fitted with a pure luminosity evolution L~(1+z)^{(3.16 +- 0.2)-(0.32 +- 0.07) z}. We estimate star formation rates (SFRs) from our radio luminosities using an infrared (IR)-radio correlation that is redshift dependent. By integrating the parametric fits of the evolved luminosity function we calculate the cosmic SFR density (SFRD) history since z~5. Our data suggest that the SFRD history peaks between 2<z<3 and that the ultraluminous infrared galaxies (ULIRGs; 100 Msol/yr<SFR<1000 Msol/yr) contribute up to ~25% to the total SFRD in the same redshift range. Hyperluminous infrared galaxies (HyLIRGs; SFR>1000 Msol/yr) contribute an additional <2% in the entire observed redshift range. We find evidence of a potential underestimation of SFRD based on ultraviolet (UV) rest-frame observations of Lyman break galaxies (LBGs) at high redshifts (z>4) on the order of 15-20%, owing to appreciable star formation in highly dust-obscured galaxies, which might remain undetected in such UV observations.
212 - Tomotsugu Goto 2015
Infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe these bot h at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160$mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe 8$mu$m, 12$mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2 using 4128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$mu$m) by the AKARI satellite allows us to estimate restframe 8$mu$m and 12$mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from $z$=0 to $z$=2.2, all probed by the AKARI satellite. The next generation space infrared telescope, SPICA, will revolutionize our view of the infrared Universe with superb sensitivity of the cooled 3m space telescope. We conclude with our survey proposal and future prospects with SPICA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا