ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic star formation history revealed by AKARI and Hyper Suprime-Cam

74   0   0.0 ( 0 )
 نشر من قبل Tomotsugu Goto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshift; the AKARI all sky survey in 6 bands (9-160 $mu$m), and the AKARI NEP survey in 9 bands (2-24$mu$m). The AKARI performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160 $mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, we measure the total infrared luminosity ($L_{TIR}$) of individual galaxies, and thus, the total infrared luminosity density of the local Universe much more precisely than previous work. In the AKARI NEP wide field, AKARI has obtained deep images in the mid-infrared (IR), covering 5.4 deg$^2$. However, our previous work was limited to the central area of 0.25 deg$^2$ due to the lack of deep optical coverage. To rectify the situation, we used the newly advent Subaru telescopes Hyper Suprime-Cam to obtain deep optical images over the entire 5.4 deg$^2$ of the AKARI NEP wide field. With this deep and wide optical data, we, for the first time, can use the entire AKARI NEP wide data to construct restframe 8$mu$m, 12$mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2. A continuous 9-band filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$mu$m) by the AKARI satellite allowed us to estimate restframe 8$mu$m and 12$mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z=0 to z=2.2, all probed by the AKARI satellite.



قيم البحث

اقرأ أيضاً

We present measurements of the clustering properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining 125 deg$^2$ of wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid- IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we have discovered 4,367 IR-bright DOGs with $(i - [22])_{rm AB}$ $>$ 7.0 and flux density at 22 $mu$m $>$ 1.0 mJy. We calculate the angular autocorrelation function (ACF) for a uniform subsample of 1411 DOGs with 3.0 mJy $<$ flux (22 $mu$m) $<$ 5.0 mJy and $i_{rm AB}$ $<$ 24.0. The ACF of our DOG subsample is well-fit with a single power-law, $omega (theta)$ = (0.010 $pm$ 0.003) $theta^{-0.9}$, where $theta$ in degrees. The correlation amplitude of IR-bright DOGs is larger than that of IR-faint DOGs, which reflects a flux-dependence of the DOG clustering, as suggested by Brodwin et al. (2008). We assume that the redshift distribution for our DOG sample is Gaussian, and consider 2 cases: (1) the redshift distribution is the same as IR-faint DOGs with flux at 22 $mu$m $<$ 1.0 mJy, mean and sigma $z$ = 1.99 $pm$ 0.45, and (2) $z$ = 1.19 $pm$ 0.30, as inferred from their photometric redshifts. The inferred correlation length of IR-bright DOGs is $r_0$ = 12.0 $pm$ 2.0 and 10.3 $pm$ 1.7 $h^{-1}$ Mpc, respectively. IR-bright DOGs reside in massive dark matter halos with a mass of $log [langle M_{mathrm{h}} rangle / (h^{-1} M_{odot})]$ = 13.57$_{-0.55}^{+0.50}$ and 13.65$_{-0.52}^{+0.45}$ in the two cases, respectively.
Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to p robe this both at low and high redshifts. The AKARI performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160$mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can much more precisely measure the total infrared luminosity ($L_{TIR}$) of individual galaxies, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe 8$mu$m, 12$mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2 using 4128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$mu$m) by the AKARI satellite allows us to estimate restframe 8$mu$m and 12$mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from $z$=0 to $z$=2.2, all probed by the AKARI satellite.
211 - Tomotsugu Goto 2015
Infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe these bot h at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160$mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe 8$mu$m, 12$mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2 using 4128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$mu$m) by the AKARI satellite allows us to estimate restframe 8$mu$m and 12$mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from $z$=0 to $z$=2.2, all probed by the AKARI satellite. The next generation space infrared telescope, SPICA, will revolutionize our view of the infrared Universe with superb sensitivity of the cooled 3m space telescope. We conclude with our survey proposal and future prospects with SPICA.
We present an overview of a deep transient survey of the COSMOS field with the Subaru Hyper Suprime-Cam (HSC). The survey was performed for the 1.77 deg$^2$ ultra-deep layer and 5.78 deg$^2$ deep layer in the Subaru Strategic Program over 6- and 4-mo nth periods from 2016 to 2017, respectively. The ultra-deep layer shows a median depth per epoch of 26.4, 26.3, 26.0, 25.6, and 24.6 mag in $g$, $r$, $i$, $z$, and $y$ bands, respectively; the deep layer is $sim0.6$ mag shallower. In total, 1,824 supernova candidates were identified. Based on light curve fitting and derived light curve shape parameter, we classified 433 objects as Type Ia supernovae (SNe); among these candidates, 129 objects have spectroscopic or COSMOS2015 photometric redshifts and 58 objects are located at $z > 1$. Our unique dataset doubles the number of Type Ia SNe at $z > 1$ and enables various time-domain analyses of Type II SNe, high redshift superluminous SNe, variable stars, and active galactic nuclei.
The extragalactic background suggests half the energy generated by stars reprocessed into the infrared (IR) by dust. At z$sim$1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to inv estigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field (5.4 deg$^2$), using $sim$10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARIs infrared sources undetected with the previous CFHT/Megacam imaging ($rsim$25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1$<z<$2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands ($g,r,i,z,$ and $y$) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARIs mid-IR AGN/SF diagnosis, and accurate mid-IR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا