ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous symmetry breaking in finite systems and anomalous order-parameter correlations

59   0   0.0 ( 0 )
 نشر من قبل Fotios Diakonos K
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the spontaneous symmetry breaking can be defined also for finite systems based on the properly defined jump probability between the ground states in the 2d and 3d Ising models on a square and a cubic lattice respectively. Our analysis reveals the existence of an interval in the temperature (control parameter) space within which the spontaneous symmetry breaking takes place. The upper limit of this region is the pseudocritical point where the symmetric vacuum bifurcates in energetically degenerate non-symmetric vacua, initiating the spontaneous symmetry breaking process. The lower limit, identified as the temperature value at which the spontaneous symmetry breaking is completed, is characterized by maximal characteristic time for the decay of magnetization (order parameter) auto-correlations. We argue that this anomalous enhancement of auto-correlations is attributed to the transition from type I to on-off intermittency in the order parameter dynamics. Possible phenomenological implications of this behaviour are briefly discussed.

قيم البحث

اقرأ أيضاً

Landaus spontaneous symmetry breaking theory is a fundamental theory that describes the collective behaviors in many-body systems. It was well known that for usual spontaneous symmetry breaking in Hermitian systems, the order-disorder phase transitio n with gap closing and spontaneous symmetry breaking occur at the same critical point. In this paper, we generalized the Landaus spontaneous symmetry breaking theory to the cases in non-Hermitian (NH) many-body systems with biorthogonal Z2 symmetry and tried to discover certain universal features. We were surprised to find that the effect of the NH terms splits the spontaneous biorthogonal Z2 symmetry breaking from a (biorthogonal) order-disorder phase transition with gap closing. The sudden change of similarity for two degenerate ground states indicates a new type of quantum phase transition without gap closing accompanied by spontaneous biorthogonal Z2 symmetry breaking. We will take the NH transverse Ising model as an example to investigate the anomalous spontaneous symmetry breaking. The numerical results were consistent with the theoretical predictions.
We investigate a recently proposed non-Markovian random walk model characterized by loss of memories of the recent past and amnestically induced persistence. We report numerical and analytical results showing the complete phase diagram, consisting of 4 phases, for this system: (i) classical nonpersistence, (ii) classical persistence (iii) log-periodic nonpersistence and (iv) log-periodic persistence driven by negative feedback. The first two phases possess continuous scale invariance symmetry, however log-periodicity breaks this symmetry. Instead, log-periodic motion satisfies discrete scale invariance symmetry, with complex rather than real fractal dimensions. We find for log-periodic persistence evidence not only of statistical but also of geometric self-similarity.
82 - J. Smits , H.T.C. Stoof , 2021
Spontaneous symmetry breaking (SSB) is a key concept in physics that for decades has played a crucial role in the description of many physical phenomena in a large number of different areas, like particle physics, cosmology, and condensed-matter phys ics. SSB is thus an ubiquitous concept connecting several, both high and low energy, areas of physics and many textbooks describe its basic features in great detail. However, to study the dynamics of symmetry breaking in the laboratory is extremely difficult. In condensed-matter physics, for example, tiny external disturbances cause a preference for the breaking of the symmetry in a particular configuration and typically those disturbances cannot be avoided in experiments. Notwithstanding these complications, here we describe an experiment, in which we directly observe the spontaneous breaking of the temporal phase of a driven system with respect to the drive into two distinct values differing by $pi$.
We introduce a class of 1D models mimicking a single-lane bridge with two junctions and two particle species driven in opposite directions. The model exhibits spontaneous symmetry breaking (SSB) for a range of injection/extraction rates. In this phas e the steady state currents of the two species are not equal. Moreover there is a co-existence region in which the symmetry broken phase co-exists with a symmetric phase. Along a path in which the extraction rate is varied, keeping the injection rate fixed and large, hysteresis takes place. The mean field phase diagram is calculated and supporting Monte-Carlo simulations are presented. One of the transition lines exhibits a kink, a feature which cannot exist in transition lines of equilibrium phase transitions.
We present a numerical study of a two-lane version of the stochastic non-equilibrium model known as the totally asymmetric simple exclusion process. For such a system with open boundaries, and suitably chosen values of externally-imposed particle inj ection ($alpha$) and ejection ($beta$) rates, spontaneous symmetry breaking can occur. We investigate the statistics and internal structure of the stochastically-induced transitions, or flips, which occur between opposite broken-symmetry states as the system evolves in time. From the distribution of time intervals separating successive flips, we show that the evolution of the associated characteristic times against externally-imposed rates yields information regarding the proximity to a critical point in parameter space. On short time scales, we probe for the possible existence of precursor events to a flip between opposite broken-symmetry states. We study an adaptation of domain-wall theory to mimic the density reversal process associated with a flip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا