ﻻ يوجد ملخص باللغة العربية
Maintaining computational load balance is important to the performant behavior of codes which operate under a distributed computing model. This is especially true for GPU architectures, which can suffer from memory oversubscription if improperly load balanced. We present enhancements to traditional load balancing approaches and explicitly target GPU architectures, exploring the resulting performance. A key component of our enhancements is the introduction of several GPU-amenable strategies for assessing compute work. These strategies are implemented and benchmarked to find the most optimal data collection methodology for in-situ assessment of GPU compute work. For the fully kinetic particle-in-cell code WarpX, which supports MPI+CUDA parallelism, we investigate the performance of the improved dynamic load balancing via a strong scaling-based performance model and show that, for a laser-ion acceleration test problem run with up to 6144 GPUs on Summit, the enhanced dynamic load balancing achieves from 62%--74% (88% when running on 6 GPUs) of the theoretically predicted maximum speedup; for the 96-GPU case, we find that dynamic load balancing improves performance relative to baselines without load balancing (3.8x speedup) and with static load balancing (1.2x speedup). Our results provide important insights into dynamic load balancing and performance assessment, and are particularly relevant in the context of distributed memory applications ran on GPUs.
In the load balancing problem, each node in a network is assigned a load, and the goal is to equally distribute the loads among the nodes, by preforming local load exchanges. While load balancing was extensively studied in static networks, only recen
Popular dispatching policies such as the join shortest queue (JSQ), join smallest work (JSW) and their power of two variants are used in load balancing systems where the instantaneous queue length or workload information at all queues or a subset of
Equation systems resulting from a p-version FEM discretisation typically require a special treatment as iterative solvers are not very efficient here. Applying hierarchical concepts based on a nested dissection approach allow for both the design of s
Distributed processing across a networked environment suffers from unpredictable behavior of speedup due to heterogeneous nature of the hardware and software in the remote machines. It is challenging to get a better performance from a distributed sys
The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be