ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic vibrational angular momentum from non-adiabatic effects in non-collinear magnetic molecules

65   0   0.0 ( 0 )
 نشر من قبل Oliviero Bistoni
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in non-collinear magnetic molecules, non-adiabatic (dynamical) effects due to the electron-vibron coupling are time-reversal symmetry breaking interactions for the vibrational field. As in these systems the electronic wavefunction can not be chosen as real, a nonzero geometric vector potential (Berry connection) arises. As a result, an intrinsic nonzero vibrational angular momentum occurs even for non-degenerate modes and in the absence of external probes. The vibronic modes can then be seen as elementary quantum particles carrying a sizeable angular momentum. As a proof of concept, we demonstrate the magnitude of this topological effect by performing non-adiabatic first principles calculations on platinum clusters and by showing that these molecules host sizeable intrinsic phonon angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.



قيم البحث

اقرأ أيضاً

We present a thorough theoretical assessment of the stability of non-collinear spin arrangements in small palladium clusters. We generally find that ferromagnetic order is always preferred, but that antiferromagnetic and non-collinear configurations of different sorts exist and compete for the first excited isomers. We also show that the relative stability of all these states is rather insensitive to the choice of atomic configuration for the pseudopotential used and to the approximation taken for the exchange and correlation potential. This result stands in stark contrast with the situation found for the bulk phases of palladium.
This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.
First-principles calculations are used in order to investigate phonon anomalies in non-magnetic and magnetic Heusler alloys. Phonon dispersions for several systems in their cubic L2$mathrm{_1}$ structure were obtained along the [110] direction. We co nsider compounds which exhibit phonon instabilities and compare them with their stable counterparts. The analysis of the electronic structure allows us to identify the characteristic features leading to structural instabilities. The phonon dispersions of the unstable compounds show that, while the acoustic modes tend to soften, the optical modes disperse in a way which is significantly different from that of the stable structures. The optical modes that appear to disperse at anomalously low frequencies are Raman active, which is considered an indication of a stronger polarizability of the unstable systems. We show that phonon instability of the TA$_{2}$ mode in Heusler alloys is driven by interaction(repulsion) with the low energy optical vibrations. The optical modes show their unusual behavior due to covalent interactions which are additional bonding features incommensurate with the dominating metallicity in Heusler compounds.
We propose that non-collinear magnetic order in quantum magnets can harbor a novel higher-order topological magnon phase with non-Hermitian topology and hinge magnon modes. We consider a three-dimensional system of interacting local moments on stacke d-layers of honeycomb lattice. It initially favors a collinear magnetic order along an in-plane direction, which turns into a non-collinear order upon applying an external magnetic field perpendicular to the easy axis. We exploit the non-Hermitian nature of the magnon Hamiltonian to show that this field-induced transition corresponds to the transformation from a topological magnon insulator to a higher-order topological magnon state with a one-dimensional hinge mode. As a concrete example, we discuss the recently-discovered monoclinic phase of the thin chromium trihalides, which we propose as the first promising material candidate of the higher-order topological magnon phase.
Polar molecules in selected quantum states can be guided, decelerated and trapped using electric fields created by microstructured electrodes on a chip. Here we explore how non-adiabatic transitions between levels in which the molecules are trapped a nd levels in which the molecules are not trapped can be suppressed. We use 12-CO and 13-CO (a 3-Pi(1), v=0) molecules, prepared in the upper Lambda-doublet component of the J=1 rotational level, and study the trap loss as a function of an offset magnetic field. The experimentally observed suppression (enhancement) of the non-adiabatic transitions for 12-CO (13-CO) with increasing magnetic field is quantitatively explained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا